pull/7/head
盘荣博 7 months ago
parent 6059412e5a
commit 7c694554d4

@ -1,5 +1,7 @@
import pandas as pd import pandas as pd
import numpy as np
from scipy.stats import zscore from scipy.stats import zscore
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from matplotlib.pyplot import ylabel from matplotlib.pyplot import ylabel
df = pd.read_excel("棉花产量论文作业的数据.xlsx") df = pd.read_excel("棉花产量论文作业的数据.xlsx")
@ -38,5 +40,22 @@ plt.scatter(data2[:,:1],data2[:,1:2],c='g')
plt.xlabel('压缩到0~1') plt.xlabel('压缩到0~1')
print(data==data1) print(data==data1)
plt.savefig("shuju.jpg",dpi=2000) # plt.savefig("shuju.jpg",dpi=2000)
plt.show() # plt.show()
md= PCA().fit(data)
cf = np.cov(data.T)#求协方差矩阵
print(cf)
c, d= np.linalg.eig(cf)
print("特征值:\n",c)
print(md.explained_variance_)
e=c/c.sum()
# for _ in range(len(e)):
# if(_!=0):
# e[_]+=e[_-1]
print('贡献率:')
print(e)
print(md.explained_variance_ratio_)
print('特征向量:')
print(d.T)
print(md.components_)
print(md.components_-d.T<=0.1)
Loading…
Cancel
Save