pull/14/head
zj3D 8 months ago
commit c99a655997

@ -1,27 +1,42 @@
from functools import reduce
from cppy.cp_util import *
# -*- coding: utf-8 -*-
from collections import Counter
from cppy.cp_util import *
from functools import reduce
# map - reduce
def process_chunk(chunk):
# 过滤停用词
stop_words = get_stopwords()
words = [ w for w in chunk if ( not w in stop_words ) and len(w) >= 3 ]
return Counter(words)
def partition(data_str, nlines):
lines = data_str.split('\n')
for i in range(0, len(lines), nlines):
yield '\n'.join(lines[i:i+nlines])
def merge_counts(count1,count2):
sum_counts = count1 + count2
return sum_counts
def split_words(data_str):
word_list = extract_str_words(data_str)
return Counter( word_list )
def count_words(pairs_list_1, pairs_list_2):
return pairs_list_1 + pairs_list_2
@timing_decorator
def main():
# 读取文件内容
content = re_split(read_file(testfilepath))
# 分割文件内容为多个块,每个块由一个进程处理
chunk_size = 1000 # 可以根据实际情况调整块大小
chunks = [content[i:i + chunk_size] for i in range(0, len(content), chunk_size)]
# 使用 map 方法和 process_chunk 函数处理每个分区
counts_list = list(map(process_chunk, chunks))
# 使用 reduce 和 merge_counts 函数统计所有分区的词频
total_counts = (reduce(merge_counts,counts_list))
# 输出最高频的n个词
print_word_freqs(total_counts.most_common(10))
if __name__ == '__main__':
data = read_file(testfilepath)
main()
# 使用 map 方法和 split_words 函数处理每个分区
splits = map(split_words, partition(data, 200))
splits_list = list(splits)
# 使用 reduce 和 count_words 函数统计所有分区的词频
word_freqs = sort_dict(reduce(count_words, splits_list, Counter()) )
print_word_freqs(word_freqs)

@ -1,37 +0,0 @@
from functools import reduce
from cppy.cp_util import *
#################################################
# Functions for map reduce
#################################################
def partition(data_str, nlines):
lines = data_str.split('\n')
for i in range(0, len(lines), nlines):
yield '\n'.join(lines[i:i+nlines])
def split_words(data_str):
words = extract_str_words(data_str)
return [ (w, 1) for w in words ]
def regroup(pairs_list):
mapping = {}
for pairs in pairs_list:
for p in pairs:
mapping[p[0]] = mapping.get(p[0], []) + [p]
return mapping
def count_words(mapping):
def add(x, y): return x+y
return ( mapping[0],
reduce(add, (pair[1] for pair in mapping[1]))
)
def sort (word_freq):
return sorted(word_freq, key=operator.itemgetter(1), reverse=True)
if __name__ == '__main__':
data = read_file(testfilepath)
splits = map(split_words, partition(data, 200))
splits_per_word = regroup(splits)
word_freqs = sort(map(count_words, splits_per_word.items()))
print_word_freqs(word_freqs)

@ -0,0 +1,56 @@
# -*- coding: utf-8 -*-
from collections import Counter
from cppy.cp_util import *
from multiprocessing.pool import ThreadPool
#
# 多线程
#
def process_chunk(chunk):
# 过滤停用词
stop_words = get_stopwords()
words = [ w for w in chunk if ( not w in stop_words ) and len(w) >= 3 ]
return Counter(words)
def merge_counts(counts_list):
# 合并多个Counter对象
total_counts = Counter()
for counts in counts_list:
total_counts += counts
return total_counts
def thread_function(chunk, counts_list):
word_count = process_chunk(chunk)
counts_list.append(word_count)
@timing_decorator
def main():
# 读取文件内容
content = re_split(read_file(testfilepath))
chunk_size = 1000 # 可以根据实际情况调整块大小
chunks = [content[i:i + chunk_size] for i in range(0, len(content), chunk_size)]
# 使用多线程池,每个线程处理一个块
pool = ThreadPool(len(content)//chunk_size+1)
counts_list = pool.map(process_chunk, chunks)
pool.close()
pool.join()
# 合并计数
total_counts = merge_counts(counts_list)
# 输出最高频的n个词
print_word_freqs(total_counts.most_common(10))
if __name__ == '__main__':
main()

@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
import multiprocessing
from collections import Counter
from cppy.cp_util import *
#
# 多进程
#
def process_chunk(chunk):
# 过滤停用词
stop_words = get_stopwords()
words = [ w for w in chunk if ( not w in stop_words ) and len(w) >= 3 ]
return Counter(words)
def merge_counts(counts_list):
# 合并多个Counter对象
total_counts = Counter()
for counts in counts_list:
total_counts += counts
return total_counts
@timing_decorator
def main():
# 读取文件内容
content = re_split(read_file(testfilepath))
# 分割文件内容为多个块,每个块由一个进程处理
chunk_size = 1000 # 可以根据实际情况调整块大小
chunks = [content[i:i + chunk_size] for i in range(0, len(content), chunk_size)]
# 使用多进程处理每个块
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
counts_list = pool.map(process_chunk, chunks)
pool.close()
pool.join()
# 合并计数
total_counts = merge_counts(counts_list)
# 输出最高频的n个词
print_word_freqs(total_counts.most_common(10))
if __name__ == '__main__':
main()

@ -1,54 +0,0 @@
import threading
from collections import Counter
from cppy.cp_util import *
#
# 多线程
#
def process_chunk(start, end, text, result_index, results):
# 切词并过滤停用词
words = extract_str_words( text[start:end] )
results[result_index] = Counter(words)
def merge_counts(counts_list):
# 合并多个Counter对象
total_counts = Counter()
for counts in counts_list:
total_counts += counts
return total_counts
@timing_decorator
def main():
# 读取文件内容
text = read_file(testfilepath)
# 确定线程数量
num_threads = 4
text_length = len(text)
chunk_size = text_length // num_threads
# 存储每个线程的结果
results = [None] * num_threads
threads = []
# 创建并启动线程
for i in range(num_threads):
start = i * chunk_size
# 确保最后一个线程能够读取文件的末尾
end = text_length if i == num_threads - 1 else (i + 1) * chunk_size
t = threading.Thread(target=process_chunk, args=(start, end, text, i, results))
threads.append(t)
t.start()
# 等待所有线程完成
for t in threads: t.join()
# 合并计数
total_counts = merge_counts(results)
# 输出最高频的n个词
print_word_freqs( total_counts.most_common(10) )
if __name__ == '__main__':
main()

@ -1,44 +0,0 @@
import multiprocessing
from collections import Counter
from cppy.cp_util import *
#
# 多进程
#
def process_chunk(chunk):
# 切词并过滤停用词
words = extract_str_words( chunk.lower() )
return Counter(words)
def merge_counts(counts_list):
# 合并多个Counter对象
total_counts = Counter()
for counts in counts_list:
total_counts += counts
return total_counts
@timing_decorator
def main():
# 读取文件内容
content = read_file(testfilepath)
# 分割文件内容为多个块,每个块由一个进程处理
chunk_size = 1000 # 可以根据实际情况调整块大小
chunks = [content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]
# 使用多进程处理每个块
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
counts_list = pool.map(process_chunk, chunks)
pool.close()
pool.join()
# 合并计数
total_counts = merge_counts(counts_list)
# 输出最高频的n个词
print_word_freqs( total_counts.most_common(10) )
if __name__ == '__main__':
main()
Loading…
Cancel
Save