Compare commits
10 Commits
Author | SHA1 | Date |
---|---|---|
|
0691ef1c7d | 4 years ago |
|
4d7eb75541 | 4 years ago |
|
2311b9908f | 4 years ago |
|
1a835e8c2f | 4 years ago |
|
de37ea63a0 | 4 years ago |
|
8f0b071f10 | 4 years ago |
|
5f60bf1169 | 4 years ago |
|
41285de9cd | 4 years ago |
|
c700fefad8 | 4 years ago |
|
21a726e134 | 4 years ago |
@ -0,0 +1,53 @@
|
||||
# coding: utf-8
|
||||
import numpy as np
|
||||
|
||||
def _numerical_gradient_1d(f, x):
|
||||
h = 1e-4 # 0.0001
|
||||
grad = np.zeros_like(x)
|
||||
|
||||
for idx in range(x.size):
|
||||
tmp_val = x[idx]
|
||||
x[idx] = float(tmp_val) + h
|
||||
fxh1 = f(x) # f(x+h)
|
||||
|
||||
x[idx] = tmp_val - h
|
||||
fxh2 = f(x) # f(x-h)
|
||||
grad[idx] = (fxh1 - fxh2) / (2*h)
|
||||
|
||||
x[idx] = tmp_val # 还原值
|
||||
|
||||
return grad
|
||||
|
||||
|
||||
def numerical_gradient_2d(f, X):
|
||||
if X.ndim == 1:
|
||||
return _numerical_gradient_1d(f, X)
|
||||
else:
|
||||
grad = np.zeros_like(X)
|
||||
|
||||
for idx, x in enumerate(X):
|
||||
grad[idx] = _numerical_gradient_1d(f, x)
|
||||
|
||||
return grad
|
||||
|
||||
|
||||
def numerical_gradient(f, x):
|
||||
h = 1e-4 # 0.0001
|
||||
grad = np.zeros_like(x)
|
||||
|
||||
# 多维迭代
|
||||
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
|
||||
while not it.finished:
|
||||
idx = it.multi_index
|
||||
tmp_val = x[idx]
|
||||
x[idx] = float(tmp_val) + h
|
||||
fxh1 = f(x) # f(x+h)
|
||||
|
||||
x[idx] = tmp_val - h
|
||||
fxh2 = f(x) # f(x-h)
|
||||
grad[idx] = (fxh1 - fxh2) / (2*h)
|
||||
|
||||
x[idx] = tmp_val # 还原值
|
||||
it.iternext()
|
||||
|
||||
return grad
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,78 @@
|
||||
# coding: utf-8
|
||||
import sys, os
|
||||
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
|
||||
import numpy as np
|
||||
from common.optimizer import *
|
||||
|
||||
class Trainer:
|
||||
"""进行神经网络的训练的类
|
||||
"""
|
||||
def __init__(self, network, x_train, t_train, x_test, t_test,
|
||||
epochs=20, mini_batch_size=100,
|
||||
optimizer='SGD', optimizer_param={'lr':0.01},
|
||||
evaluate_sample_num_per_epoch=None, verbose=True):
|
||||
self.network = network
|
||||
self.verbose = verbose
|
||||
self.x_train = x_train
|
||||
self.t_train = t_train
|
||||
self.x_test = x_test
|
||||
self.t_test = t_test
|
||||
self.epochs = epochs
|
||||
self.batch_size = mini_batch_size
|
||||
self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch
|
||||
|
||||
# optimzer
|
||||
optimizer_class_dict = {'sgd':SGD, 'momentum':Momentum, 'nesterov':Nesterov,
|
||||
'adagrad':AdaGrad, 'rmsprpo':RMSprop, 'adam':Adam}
|
||||
self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)
|
||||
|
||||
self.train_size = x_train.shape[0]
|
||||
self.iter_per_epoch = max(self.train_size / mini_batch_size, 1)
|
||||
self.max_iter = int(epochs * self.iter_per_epoch)
|
||||
self.current_iter = 0
|
||||
self.current_epoch = 0
|
||||
|
||||
self.train_loss_list = []
|
||||
self.train_acc_list = []
|
||||
self.test_acc_list = []
|
||||
|
||||
def train_step(self):
|
||||
batch_mask = np.random.choice(self.train_size, self.batch_size)
|
||||
x_batch = self.x_train[batch_mask]
|
||||
t_batch = self.t_train[batch_mask]
|
||||
|
||||
grads = self.network.gradient(x_batch, t_batch)
|
||||
self.optimizer.update(self.network.params, grads)
|
||||
|
||||
loss = self.network.loss(x_batch, t_batch)
|
||||
self.train_loss_list.append(loss)
|
||||
if self.verbose: print("train loss:" + str(loss))
|
||||
|
||||
if self.current_iter % self.iter_per_epoch == 0:
|
||||
self.current_epoch += 1
|
||||
|
||||
x_train_sample, t_train_sample = self.x_train, self.t_train
|
||||
x_test_sample, t_test_sample = self.x_test, self.t_test
|
||||
if not self.evaluate_sample_num_per_epoch is None:
|
||||
t = self.evaluate_sample_num_per_epoch
|
||||
x_train_sample, t_train_sample = self.x_train[:t], self.t_train[:t]
|
||||
x_test_sample, t_test_sample = self.x_test[:t], self.t_test[:t]
|
||||
|
||||
train_acc = self.network.accuracy(x_train_sample, t_train_sample)
|
||||
test_acc = self.network.accuracy(x_test_sample, t_test_sample)
|
||||
self.train_acc_list.append(train_acc)
|
||||
self.test_acc_list.append(test_acc)
|
||||
|
||||
if self.verbose: print("=== epoch:" + str(self.current_epoch) + ", train acc:" + str(train_acc) + ", test acc:" + str(test_acc) + " ===")
|
||||
self.current_iter += 1
|
||||
|
||||
def train(self):
|
||||
for i in range(self.max_iter):
|
||||
self.train_step()
|
||||
|
||||
test_acc = self.network.accuracy(self.x_test, self.t_test)
|
||||
|
||||
if self.verbose:
|
||||
print("=============== Final Test Accuracy ===============")
|
||||
print("test acc:" + str(test_acc))
|
||||
|
Loading…
Reference in new issue