|
|
@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
import threading
|
|
|
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
import contextlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import torchvision
|
|
|
|
|
|
|
|
from models.common import DetectMultiBackend
|
|
|
|
|
|
|
|
from utils.plots import Annotator
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
import base64
|
|
|
|
|
|
|
|
import socket
|
|
|
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from utils.general import (LOGGER, Profile, check_file, check_imshow, check_requirements, colorstr, cv2,
|
|
|
|
|
|
|
|
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
|
|
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
import nvidia_smi
|
|
|
|
|
|
|
|
from ctypes import windll
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FILE = Path(__file__).resolve()
|
|
|
|
|
|
|
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
|
|
|
|
|
|
|
if str(ROOT) not in sys.path:
|
|
|
|
|
|
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
|
|
|
|
|
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 清空命令指示符输出
|
|
|
|
|
|
|
|
def clear():
|
|
|
|
|
|
|
|
_ = os.system('cls')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 检查是否为管理员权限
|
|
|
|
|
|
|
|
def is_admin():
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
return windll.shell32.IsUserAnAdmin()
|
|
|
|
|
|
|
|
except OSError as err:
|
|
|
|
|
|
|
|
print('OS error: {0}'.format(err))
|
|
|
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 简单检查gpu是否够格
|
|
|
|
|
|
|
|
def check_gpu():
|
|
|
|
|
|
|
|
nvidia_smi.nvmlInit()
|
|
|
|
|
|
|
|
gpu_handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # 默认卡1
|
|
|
|
|
|
|
|
gpu_name = nvidia_smi.nvmlDeviceGetName(gpu_handle)
|
|
|
|
|
|
|
|
memory_info = nvidia_smi.nvmlDeviceGetMemoryInfo(gpu_handle)
|
|
|
|
|
|
|
|
nvidia_smi.nvmlShutdown()
|
|
|
|
|
|
|
|
if b'RTX' in gpu_name:
|
|
|
|
|
|
|
|
return 2
|
|
|
|
|
|
|
|
memory_total = memory_info.total / 1024 / 1024
|
|
|
|
|
|
|
|
if memory_total > 3000:
|
|
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
|
|
|
|
# Returns nearest x divisible by divisor
|
|
|
|
|
|
|
|
if isinstance(divisor, torch.Tensor):
|
|
|
|
|
|
|
|
divisor = int(divisor.max()) # to int
|
|
|
|
|
|
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_img_size(imgsz, s=32, floor=0):
|
|
|
|
|
|
|
|
# Verify image size is a multiple of stride s in each dimension
|
|
|
|
|
|
|
|
if isinstance(imgsz, int): # integer i.e. img_size=640
|
|
|
|
|
|
|
|
new_size = max(make_divisible(imgsz, int(s)), floor)
|
|
|
|
|
|
|
|
else: # list i.e. img_size=[640, 480]
|
|
|
|
|
|
|
|
imgsz = list(imgsz) # convert to list if tuple
|
|
|
|
|
|
|
|
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
|
|
|
|
|
|
|
if new_size != imgsz:
|
|
|
|
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
|
|
|
|
|
|
|
return new_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def clip_boxes(boxes, shape):
|
|
|
|
|
|
|
|
# Clip boxes (xyxy) to image shape (height, width)
|
|
|
|
|
|
|
|
if isinstance(boxes, torch.Tensor): # faster individually
|
|
|
|
|
|
|
|
boxes[:, 0].clamp_(0, shape[1]) # x1
|
|
|
|
|
|
|
|
boxes[:, 1].clamp_(0, shape[0]) # y1
|
|
|
|
|
|
|
|
boxes[:, 2].clamp_(0, shape[1]) # x2
|
|
|
|
|
|
|
|
boxes[:, 3].clamp_(0, shape[0]) # y2
|
|
|
|
|
|
|
|
else: # np.array (faster grouped)
|
|
|
|
|
|
|
|
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
|
|
|
|
|
|
|
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
|
|
|
|
|
|
|
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
|
|
|
|
|
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
|
|
|
|
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
|
|
|
|
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
gain = ratio_pad[0][0]
|
|
|
|
|
|
|
|
pad = ratio_pad[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
boxes[:, [0, 2]] -= pad[0] # x padding
|
|
|
|
|
|
|
|
boxes[:, [1, 3]] -= pad[1] # y padding
|
|
|
|
|
|
|
|
boxes[:, :4] /= gain
|
|
|
|
|
|
|
|
clip_boxes(boxes, img0_shape)
|
|
|
|
|
|
|
|
return boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
|
|
|
|
|
|
|
# Resize and pad image while meeting stride-multiple constraints
|
|
|
|
|
|
|
|
shape = im.shape[:2] # current shape [height, width]
|
|
|
|
|
|
|
|
if isinstance(new_shape, int):
|
|
|
|
|
|
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Scale ratio (new / old)
|
|
|
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
|
|
|
|
|
|
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
|
|
|
|
|
|
|
r = min(r, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Compute padding
|
|
|
|
|
|
|
|
ratio = r, r # width, height ratios
|
|
|
|
|
|
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
|
|
|
|
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
|
|
|
|
|
|
|
if auto: # minimum rectangle
|
|
|
|
|
|
|
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
|
|
|
|
|
|
|
elif scaleFill: # stretch
|
|
|
|
|
|
|
|
dw, dh = 0.0, 0.0
|
|
|
|
|
|
|
|
new_unpad = (new_shape[1], new_shape[0])
|
|
|
|
|
|
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dw /= 2 # divide padding into 2 sides
|
|
|
|
|
|
|
|
dh /= 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if shape[::-1] != new_unpad: # resize
|
|
|
|
|
|
|
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
|
|
|
|
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
|
|
|
|
|
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
|
|
|
|
|
|
|
return im, ratio, (dw, dh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def select_device(device='', batch_size=0, newline=True):
|
|
|
|
|
|
|
|
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
|
|
|
|
|
|
|
s = f'torch-{torch.__version__} '
|
|
|
|
|
|
|
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
|
|
|
|
|
|
|
cpu = device == 'cpu'
|
|
|
|
|
|
|
|
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
|
|
|
|
|
|
|
if cpu or mps:
|
|
|
|
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
|
|
|
|
|
|
|
elif device: # non-cpu device requested
|
|
|
|
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
|
|
|
|
|
|
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
|
|
|
|
|
|
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
|
|
|
|
|
|
|
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
|
|
|
|
|
|
|
n = len(devices) # device count
|
|
|
|
|
|
|
|
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
|
|
|
|
|
|
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
|
|
|
|
|
|
|
space = ' ' * (len(s) + 1)
|
|
|
|
|
|
|
|
for i, d in enumerate(devices):
|
|
|
|
|
|
|
|
p = torch.cuda.get_device_properties(i)
|
|
|
|
|
|
|
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
|
|
|
|
|
|
|
arg = 'cuda:0'
|
|
|
|
|
|
|
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
|
|
|
|
|
|
|
s += 'MPS\n'
|
|
|
|
|
|
|
|
arg = 'mps'
|
|
|
|
|
|
|
|
else: # revert to CPU
|
|
|
|
|
|
|
|
s += 'CPU\n'
|
|
|
|
|
|
|
|
arg = 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not newline:
|
|
|
|
|
|
|
|
s = s.rstrip()
|
|
|
|
|
|
|
|
LOGGER.info(s)
|
|
|
|
|
|
|
|
return torch.device(arg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class YOLO:
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
|
|
|
path,
|
|
|
|
|
|
|
|
device,
|
|
|
|
|
|
|
|
imgsz,
|
|
|
|
|
|
|
|
conf=0.3,
|
|
|
|
|
|
|
|
iou=0.25,
|
|
|
|
|
|
|
|
classes=None,
|
|
|
|
|
|
|
|
max_det=50,
|
|
|
|
|
|
|
|
half=True,
|
|
|
|
|
|
|
|
dnn=False,
|
|
|
|
|
|
|
|
agnostic_nms=False):
|
|
|
|
|
|
|
|
self.half = half
|
|
|
|
|
|
|
|
self.device = torch.device('cuda:0')
|
|
|
|
|
|
|
|
self.conf = conf
|
|
|
|
|
|
|
|
self.iou_thres = iou
|
|
|
|
|
|
|
|
self.agnostic_nms = agnostic_nms
|
|
|
|
|
|
|
|
self.max_det = max_det
|
|
|
|
|
|
|
|
model = DetectMultiBackend(path, device=self.device, dnn=dnn)
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
self.stride, self.names, self.pt, self.jit, self.onnx = model.stride, model.names, model.pt, model.jit, model.onnx
|
|
|
|
|
|
|
|
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz
|
|
|
|
|
|
|
|
self.img_size = check_img_size(imgsz, s=self.stride) # check image size
|
|
|
|
|
|
|
|
if self.pt:
|
|
|
|
|
|
|
|
model.model.half() if half else model.model.float()
|
|
|
|
|
|
|
|
if half:
|
|
|
|
|
|
|
|
dtype = torch.float16
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
dtype = torch.float32
|
|
|
|
|
|
|
|
model(torch.zeros(1, 3, *self.img_size).to(device).type(dtype)) # warmup
|
|
|
|
|
|
|
|
self.model = model
|
|
|
|
|
|
|
|
self.classes = classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
|
|
|
def predict(self, im):
|
|
|
|
|
|
|
|
# Load model
|
|
|
|
|
|
|
|
src_shape = im.shape
|
|
|
|
|
|
|
|
model = self.model
|
|
|
|
|
|
|
|
# Half
|
|
|
|
|
|
|
|
half = self.half # half precision only supported by PyTorch on CUDA
|
|
|
|
|
|
|
|
device = self.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = letterbox(im, self.img_size, stride=self.stride, auto=True)[0]
|
|
|
|
|
|
|
|
# Convert
|
|
|
|
|
|
|
|
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
|
|
|
|
|
|
img = np.ascontiguousarray(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
im = torch.from_numpy(img).to(device)
|
|
|
|
|
|
|
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
|
|
|
|
|
|
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
|
|
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
|
|
|
|
# Inference
|
|
|
|
|
|
|
|
pred = model(im)
|
|
|
|
|
|
|
|
# NMS
|
|
|
|
|
|
|
|
pred = non_max_suppression(pred, self.conf, self.iou_thres, self.classes, self.agnostic_nms,
|
|
|
|
|
|
|
|
max_det=self.max_det)
|
|
|
|
|
|
|
|
# if not len(det):
|
|
|
|
|
|
|
|
# return [], [], []
|
|
|
|
|
|
|
|
# det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im.shape).round()
|
|
|
|
|
|
|
|
for i, det in enumerate(pred):
|
|
|
|
|
|
|
|
# 画框
|
|
|
|
|
|
|
|
annotator = Annotator(img, line_width=2)
|
|
|
|
|
|
|
|
if len(det):
|
|
|
|
|
|
|
|
target_list = []
|
|
|
|
|
|
|
|
result = "fire"
|
|
|
|
|
|
|
|
# 将转换后的图片画框结果转换成原图上的结果
|
|
|
|
|
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
|
|
|
|
|
|
|
for *xyxy, conf, cls in reversed(det): # 处理推理出来每个目标的信息
|
|
|
|
|
|
|
|
# 将xyxy(左上角+右下角)格式转为xywh(中心点+宽长)格式,并除上w,h做归一化,转化为列表再保存
|
|
|
|
|
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() # normalized xywh
|
|
|
|
|
|
|
|
# if names[int(cls)]=='':
|
|
|
|
|
|
|
|
# result = "fire"
|
|
|
|
|
|
|
|
# type = "Alarming"
|
|
|
|
|
|
|
|
annotator.box_label(xyxy, label=f'[{YOLO.names[int(cls)]} {conf:.2f}]',
|
|
|
|
|
|
|
|
color=(34, 139, 34),
|
|
|
|
|
|
|
|
txt_color=(0, 191, 255))
|
|
|
|
|
|
|
|
target_list.append(xywh)
|
|
|
|
|
|
|
|
print('\033[0;31;40m' + f' 发现火情 ' + '\033[0m')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
im0 = annotator.result()
|
|
|
|
|
|
|
|
cv2.imshow('UAV', im0)
|
|
|
|
|
|
|
|
cv2.waitKey(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return target_list, im0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PID:
|
|
|
|
|
|
|
|
def __init__(self, p, i, d, set_value):
|
|
|
|
|
|
|
|
self.kp = p
|
|
|
|
|
|
|
|
self.ki = i
|
|
|
|
|
|
|
|
self.kd = d
|
|
|
|
|
|
|
|
self.setValue = set_value # 目标值
|
|
|
|
|
|
|
|
self.lastErr = 0 # 上一次误差
|
|
|
|
|
|
|
|
self.preLastErr = 0 # 临时存误差
|
|
|
|
|
|
|
|
self.errSum = 0 # 误差总和
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 位置式PID
|
|
|
|
|
|
|
|
def pidPosition(self, curValue):
|
|
|
|
|
|
|
|
err = self.setValue - curValue
|
|
|
|
|
|
|
|
dErr = err - self.lastErr
|
|
|
|
|
|
|
|
self.preLastErr = self.lastErr
|
|
|
|
|
|
|
|
self.lastErr = err
|
|
|
|
|
|
|
|
self.errSum += err
|
|
|
|
|
|
|
|
outPID = self.kp * err + (self.ki * self.errSum) + (self.kd * dErr)
|
|
|
|
|
|
|
|
return outPID
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# #设置时延
|
|
|
|
|
|
|
|
def delayMsecond(t): # t的单位0.1ms
|
|
|
|
|
|
|
|
start, end = 0, 0
|
|
|
|
|
|
|
|
start = time.perf_counter() * pow(10, 7)
|
|
|
|
|
|
|
|
while (end - start < t * pow(10, 3)):
|
|
|
|
|
|
|
|
end = time.perf_counter() * pow(10, 7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 连接摄像头类
|
|
|
|
|
|
|
|
class Capture:
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
|
|
|
ip="http://admin:admin@192.168.8.126:8081"):
|
|
|
|
|
|
|
|
self.ip = ip
|
|
|
|
|
|
|
|
self.cap = cv2.VideoCapture(self.ip)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read(self):
|
|
|
|
|
|
|
|
ret, img = self.cap.read()
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def my_cvtColo(img, code):
|
|
|
|
|
|
|
|
choice = ["COLOR_BGRA2BGR", "cv2.COLOR_BGR2GRAY", "COLOR_BGRA2RGB", "COLOR_BGRA2RGBA"]
|
|
|
|
|
|
|
|
img = cv2.cvtColor(img,choice[code])
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
# cap = cv2.VideoCapture("http://admin:admin@192.168.8.126:8081")
|
|
|
|
|
|
|
|
# print("图像加载成功")
|
|
|
|
|
|
|
|
# 模型路径
|
|
|
|
|
|
|
|
path = 'fire.pt'
|
|
|
|
|
|
|
|
# 尺寸大小
|
|
|
|
|
|
|
|
width, height = 640, 640
|
|
|
|
|
|
|
|
ip = input("输入摄像头地址:")
|
|
|
|
|
|
|
|
cap = Capture(ip)
|
|
|
|
|
|
|
|
conf = float(input("输入置信度:"))
|
|
|
|
|
|
|
|
predict = YOLO(path, "cuda:0", imgsz=(width, height), conf=conf, classes=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
|
|
|
img = cap.read()
|
|
|
|
|
|
|
|
img = np.rot90(img, 0)
|
|
|
|
|
|
|
|
img = np.array(img)
|
|
|
|
|
|
|
|
img = my_cvtColo(img,1)
|
|
|
|
|
|
|
|
target, im0 = predict.predict(img)
|
|
|
|
|
|
|
|
img_b64 = base64.b64encode(im0).decode('utf-8')
|
|
|
|
|
|
|
|
print(img_b64)
|
|
|
|
|
|
|
|
data = {
|
|
|
|
|
|
|
|
"img": img_b64,
|
|
|
|
|
|
|
|
"type": "Alarming",
|
|
|
|
|
|
|
|
"fire_flag": 'fire'
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
json_data = json.dumps(data).encode('utf-8')
|
|
|
|
|
|
|
|
cs.send(json_data)
|
|
|
|
|
|
|
|
delayMsecond(100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
IP = int(input("请输入服务器地址:"))
|
|
|
|
|
|
|
|
port = input("请输入服务器端口号:")
|
|
|
|
|
|
|
|
cs = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
|
|
|
|
|
|
cs.connect((IP, port))
|
|
|
|
|
|
|
|
print("服务器连接成功")
|
|
|
|
|
|
|
|
is_admin()
|
|
|
|
|
|
|
|
check_gpu()
|
|
|
|
|
|
|
|
main()
|
|
|
|
|
|
|
|
cs.close()
|