master
parent
890325e0f8
commit
30a833b0f1
@ -0,0 +1,3 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
@ -0,0 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/search.iml" filepath="$PROJECT_DIR$/.idea/search.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
@ -0,0 +1,12 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="jdk" jdkName="Python 2.7" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
<option name="format" value="PLAIN" />
|
||||
<option name="myDocStringFormat" value="Plain" />
|
||||
</component>
|
||||
</module>
|
@ -0,0 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$/.." vcs="Git" />
|
||||
<mapping directory="$PROJECT_DIR$/search/Pacman" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
@ -0,0 +1 @@
|
||||
v1.001
|
@ -0,0 +1,358 @@
|
||||
# autograder.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# imports from python standard library
|
||||
import grading
|
||||
import imp
|
||||
import optparse
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import projectParams
|
||||
import random
|
||||
random.seed(0)
|
||||
try:
|
||||
from pacman import GameState
|
||||
except:
|
||||
pass
|
||||
|
||||
# register arguments and set default values
|
||||
def readCommand(argv):
|
||||
parser = optparse.OptionParser(description = 'Run public tests on student code')
|
||||
parser.set_defaults(generateSolutions=False, edxOutput=False, gsOutput=False, muteOutput=False, printTestCase=False, noGraphics=False)
|
||||
parser.add_option('--test-directory',
|
||||
dest = 'testRoot',
|
||||
default = 'test_cases',
|
||||
help = 'Root test directory which contains subdirectories corresponding to each question')
|
||||
parser.add_option('--student-code',
|
||||
dest = 'studentCode',
|
||||
default = projectParams.STUDENT_CODE_DEFAULT,
|
||||
help = 'comma separated list of student code files')
|
||||
parser.add_option('--code-directory',
|
||||
dest = 'codeRoot',
|
||||
default = "",
|
||||
help = 'Root directory containing the student and testClass code')
|
||||
parser.add_option('--test-case-code',
|
||||
dest = 'testCaseCode',
|
||||
default = projectParams.PROJECT_TEST_CLASSES,
|
||||
help = 'class containing testClass classes for this project')
|
||||
parser.add_option('--generate-solutions',
|
||||
dest = 'generateSolutions',
|
||||
action = 'store_true',
|
||||
help = 'Write solutions generated to .solution file')
|
||||
parser.add_option('--edx-output',
|
||||
dest = 'edxOutput',
|
||||
action = 'store_true',
|
||||
help = 'Generate edX output files')
|
||||
parser.add_option('--gradescope-output',
|
||||
dest = 'gsOutput',
|
||||
action = 'store_true',
|
||||
help = 'Generate GradeScope output files')
|
||||
parser.add_option('--mute',
|
||||
dest = 'muteOutput',
|
||||
action = 'store_true',
|
||||
help = 'Mute output from executing tests')
|
||||
parser.add_option('--print-tests', '-p',
|
||||
dest = 'printTestCase',
|
||||
action = 'store_true',
|
||||
help = 'Print each test case before running them.')
|
||||
parser.add_option('--test', '-t',
|
||||
dest = 'runTest',
|
||||
default = None,
|
||||
help = 'Run one particular test. Relative to test root.')
|
||||
parser.add_option('--question', '-q',
|
||||
dest = 'gradeQuestion',
|
||||
default = None,
|
||||
help = 'Grade one particular question.')
|
||||
parser.add_option('--no-graphics',
|
||||
dest = 'noGraphics',
|
||||
action = 'store_true',
|
||||
help = 'No graphics display for pacman games.')
|
||||
(options, args) = parser.parse_args(argv)
|
||||
return options
|
||||
|
||||
|
||||
# confirm we should author solution files
|
||||
def confirmGenerate():
|
||||
print 'WARNING: this action will overwrite any solution files.'
|
||||
print 'Are you sure you want to proceed? (yes/no)'
|
||||
while True:
|
||||
ans = sys.stdin.readline().strip()
|
||||
if ans == 'yes':
|
||||
break
|
||||
elif ans == 'no':
|
||||
sys.exit(0)
|
||||
else:
|
||||
print 'please answer either "yes" or "no"'
|
||||
|
||||
|
||||
# TODO: Fix this so that it tracebacks work correctly
|
||||
# Looking at source of the traceback module, presuming it works
|
||||
# the same as the intepreters, it uses co_filename. This is,
|
||||
# however, a readonly attribute.
|
||||
def setModuleName(module, filename):
|
||||
functionType = type(confirmGenerate)
|
||||
classType = type(optparse.Option)
|
||||
|
||||
for i in dir(module):
|
||||
o = getattr(module, i)
|
||||
if hasattr(o, '__file__'): continue
|
||||
|
||||
if type(o) == functionType:
|
||||
setattr(o, '__file__', filename)
|
||||
elif type(o) == classType:
|
||||
setattr(o, '__file__', filename)
|
||||
# TODO: assign member __file__'s?
|
||||
#print i, type(o)
|
||||
|
||||
|
||||
#from cStringIO import StringIO
|
||||
|
||||
def loadModuleString(moduleSource):
|
||||
# Below broken, imp doesn't believe its being passed a file:
|
||||
# ValueError: load_module arg#2 should be a file or None
|
||||
#
|
||||
#f = StringIO(moduleCodeDict[k])
|
||||
#tmp = imp.load_module(k, f, k, (".py", "r", imp.PY_SOURCE))
|
||||
tmp = imp.new_module(k)
|
||||
exec moduleCodeDict[k] in tmp.__dict__
|
||||
setModuleName(tmp, k)
|
||||
return tmp
|
||||
|
||||
import py_compile
|
||||
|
||||
def loadModuleFile(moduleName, filePath):
|
||||
with open(filePath, 'r') as f:
|
||||
return imp.load_module(moduleName, f, "%s.py" % moduleName, (".py", "r", imp.PY_SOURCE))
|
||||
|
||||
|
||||
def readFile(path, root=""):
|
||||
"Read file from disk at specified path and return as string"
|
||||
with open(os.path.join(root, path), 'r') as handle:
|
||||
return handle.read()
|
||||
|
||||
|
||||
#######################################################################
|
||||
# Error Hint Map
|
||||
#######################################################################
|
||||
|
||||
# TODO: use these
|
||||
ERROR_HINT_MAP = {
|
||||
'q1': {
|
||||
"<type 'exceptions.IndexError'>": """
|
||||
We noticed that your project threw an IndexError on q1.
|
||||
While many things may cause this, it may have been from
|
||||
assuming a certain number of successors from a state space
|
||||
or assuming a certain number of actions available from a given
|
||||
state. Try making your code more general (no hardcoded indices)
|
||||
and submit again!
|
||||
"""
|
||||
},
|
||||
'q3': {
|
||||
"<type 'exceptions.AttributeError'>": """
|
||||
We noticed that your project threw an AttributeError on q3.
|
||||
While many things may cause this, it may have been from assuming
|
||||
a certain size or structure to the state space. For example, if you have
|
||||
a line of code assuming that the state is (x, y) and we run your code
|
||||
on a state space with (x, y, z), this error could be thrown. Try
|
||||
making your code more general and submit again!
|
||||
|
||||
"""
|
||||
}
|
||||
}
|
||||
|
||||
import pprint
|
||||
|
||||
def splitStrings(d):
|
||||
d2 = dict(d)
|
||||
for k in d:
|
||||
if k[0:2] == "__":
|
||||
del d2[k]
|
||||
continue
|
||||
if d2[k].find("\n") >= 0:
|
||||
d2[k] = d2[k].split("\n")
|
||||
return d2
|
||||
|
||||
|
||||
def printTest(testDict, solutionDict):
|
||||
pp = pprint.PrettyPrinter(indent=4)
|
||||
print "Test case:"
|
||||
for line in testDict["__raw_lines__"]:
|
||||
print " |", line
|
||||
print "Solution:"
|
||||
for line in solutionDict["__raw_lines__"]:
|
||||
print " |", line
|
||||
|
||||
|
||||
def runTest(testName, moduleDict, printTestCase=False, display=None):
|
||||
import testParser
|
||||
import testClasses
|
||||
for module in moduleDict:
|
||||
setattr(sys.modules[__name__], module, moduleDict[module])
|
||||
|
||||
testDict = testParser.TestParser(testName + ".test").parse()
|
||||
solutionDict = testParser.TestParser(testName + ".solution").parse()
|
||||
test_out_file = os.path.join('%s.test_output' % testName)
|
||||
testDict['test_out_file'] = test_out_file
|
||||
testClass = getattr(projectTestClasses, testDict['class'])
|
||||
|
||||
questionClass = getattr(testClasses, 'Question')
|
||||
question = questionClass({'max_points': 0}, display)
|
||||
testCase = testClass(question, testDict)
|
||||
|
||||
if printTestCase:
|
||||
printTest(testDict, solutionDict)
|
||||
|
||||
# This is a fragile hack to create a stub grades object
|
||||
grades = grading.Grades(projectParams.PROJECT_NAME, [(None,0)])
|
||||
testCase.execute(grades, moduleDict, solutionDict)
|
||||
|
||||
|
||||
# returns all the tests you need to run in order to run question
|
||||
def getDepends(testParser, testRoot, question):
|
||||
allDeps = [question]
|
||||
questionDict = testParser.TestParser(os.path.join(testRoot, question, 'CONFIG')).parse()
|
||||
if 'depends' in questionDict:
|
||||
depends = questionDict['depends'].split()
|
||||
for d in depends:
|
||||
# run dependencies first
|
||||
allDeps = getDepends(testParser, testRoot, d) + allDeps
|
||||
return allDeps
|
||||
|
||||
# get list of questions to grade
|
||||
def getTestSubdirs(testParser, testRoot, questionToGrade):
|
||||
problemDict = testParser.TestParser(os.path.join(testRoot, 'CONFIG')).parse()
|
||||
if questionToGrade != None:
|
||||
questions = getDepends(testParser, testRoot, questionToGrade)
|
||||
if len(questions) > 1:
|
||||
print 'Note: due to dependencies, the following tests will be run: %s' % ' '.join(questions)
|
||||
return questions
|
||||
if 'order' in problemDict:
|
||||
return problemDict['order'].split()
|
||||
return sorted(os.listdir(testRoot))
|
||||
|
||||
|
||||
# evaluate student code
|
||||
def evaluate(generateSolutions, testRoot, moduleDict, exceptionMap=ERROR_HINT_MAP,
|
||||
edxOutput=False, muteOutput=False, gsOutput=False,
|
||||
printTestCase=False, questionToGrade=None, display=None):
|
||||
# imports of testbench code. note that the testClasses import must follow
|
||||
# the import of student code due to dependencies
|
||||
import testParser
|
||||
import testClasses
|
||||
for module in moduleDict:
|
||||
setattr(sys.modules[__name__], module, moduleDict[module])
|
||||
|
||||
questions = []
|
||||
questionDicts = {}
|
||||
test_subdirs = getTestSubdirs(testParser, testRoot, questionToGrade)
|
||||
for q in test_subdirs:
|
||||
subdir_path = os.path.join(testRoot, q)
|
||||
if not os.path.isdir(subdir_path) or q[0] == '.':
|
||||
continue
|
||||
|
||||
# create a question object
|
||||
questionDict = testParser.TestParser(os.path.join(subdir_path, 'CONFIG')).parse()
|
||||
questionClass = getattr(testClasses, questionDict['class'])
|
||||
question = questionClass(questionDict, display)
|
||||
questionDicts[q] = questionDict
|
||||
|
||||
# load test cases into question
|
||||
tests = filter(lambda t: re.match('[^#~.].*\.test\Z', t), os.listdir(subdir_path))
|
||||
tests = map(lambda t: re.match('(.*)\.test\Z', t).group(1), tests)
|
||||
for t in sorted(tests):
|
||||
test_file = os.path.join(subdir_path, '%s.test' % t)
|
||||
solution_file = os.path.join(subdir_path, '%s.solution' % t)
|
||||
test_out_file = os.path.join(subdir_path, '%s.test_output' % t)
|
||||
testDict = testParser.TestParser(test_file).parse()
|
||||
if testDict.get("disabled", "false").lower() == "true":
|
||||
continue
|
||||
testDict['test_out_file'] = test_out_file
|
||||
testClass = getattr(projectTestClasses, testDict['class'])
|
||||
testCase = testClass(question, testDict)
|
||||
def makefun(testCase, solution_file):
|
||||
if generateSolutions:
|
||||
# write solution file to disk
|
||||
return lambda grades: testCase.writeSolution(moduleDict, solution_file)
|
||||
else:
|
||||
# read in solution dictionary and pass as an argument
|
||||
testDict = testParser.TestParser(test_file).parse()
|
||||
solutionDict = testParser.TestParser(solution_file).parse()
|
||||
if printTestCase:
|
||||
return lambda grades: printTest(testDict, solutionDict) or testCase.execute(grades, moduleDict, solutionDict)
|
||||
else:
|
||||
return lambda grades: testCase.execute(grades, moduleDict, solutionDict)
|
||||
question.addTestCase(testCase, makefun(testCase, solution_file))
|
||||
|
||||
# Note extra function is necessary for scoping reasons
|
||||
def makefun(question):
|
||||
return lambda grades: question.execute(grades)
|
||||
setattr(sys.modules[__name__], q, makefun(question))
|
||||
questions.append((q, question.getMaxPoints()))
|
||||
|
||||
grades = grading.Grades(projectParams.PROJECT_NAME, questions,
|
||||
gsOutput=gsOutput, edxOutput=edxOutput, muteOutput=muteOutput)
|
||||
if questionToGrade == None:
|
||||
for q in questionDicts:
|
||||
for prereq in questionDicts[q].get('depends', '').split():
|
||||
grades.addPrereq(q, prereq)
|
||||
|
||||
grades.grade(sys.modules[__name__], bonusPic = projectParams.BONUS_PIC)
|
||||
return grades.points
|
||||
|
||||
|
||||
|
||||
def getDisplay(graphicsByDefault, options=None):
|
||||
graphics = graphicsByDefault
|
||||
if options is not None and options.noGraphics:
|
||||
graphics = False
|
||||
if graphics:
|
||||
try:
|
||||
import graphicsDisplay
|
||||
return graphicsDisplay.PacmanGraphics(1, frameTime=.05)
|
||||
except ImportError:
|
||||
pass
|
||||
import textDisplay
|
||||
return textDisplay.NullGraphics()
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
options = readCommand(sys.argv)
|
||||
if options.generateSolutions:
|
||||
confirmGenerate()
|
||||
codePaths = options.studentCode.split(',')
|
||||
# moduleCodeDict = {}
|
||||
# for cp in codePaths:
|
||||
# moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
|
||||
# moduleCodeDict[moduleName] = readFile(cp, root=options.codeRoot)
|
||||
# moduleCodeDict['projectTestClasses'] = readFile(options.testCaseCode, root=options.codeRoot)
|
||||
# moduleDict = loadModuleDict(moduleCodeDict)
|
||||
|
||||
moduleDict = {}
|
||||
for cp in codePaths:
|
||||
moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
|
||||
moduleDict[moduleName] = loadModuleFile(moduleName, os.path.join(options.codeRoot, cp))
|
||||
moduleName = re.match('.*?([^/]*)\.py', options.testCaseCode).group(1)
|
||||
moduleDict['projectTestClasses'] = loadModuleFile(moduleName, os.path.join(options.codeRoot, options.testCaseCode))
|
||||
|
||||
|
||||
if options.runTest != None:
|
||||
runTest(options.runTest, moduleDict, printTestCase=options.printTestCase, display=getDisplay(True, options))
|
||||
else:
|
||||
evaluate(options.generateSolutions, options.testRoot, moduleDict,
|
||||
gsOutput=options.gsOutput,
|
||||
edxOutput=options.edxOutput, muteOutput=options.muteOutput, printTestCase=options.printTestCase,
|
||||
questionToGrade=options.gradeQuestion, display=getDisplay(options.gradeQuestion!=None, options))
|
@ -0,0 +1,22 @@
|
||||
python pacman.py
|
||||
python pacman.py --layout testMaze --pacman GoWestAgent
|
||||
python pacman.py --layout tinyMaze --pacman GoWestAgent
|
||||
python pacman.py -h
|
||||
python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch
|
||||
python pacman.py -l tinyMaze -p SearchAgent
|
||||
python pacman.py -l mediumMaze -p SearchAgent
|
||||
python pacman.py -l bigMaze -z .5 -p SearchAgent
|
||||
python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs
|
||||
python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5
|
||||
python eightpuzzle.py
|
||||
python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs
|
||||
python pacman.py -l mediumDottedMaze -p StayEastSearchAgent
|
||||
python pacman.py -l mediumScaryMaze -p StayWestSearchAgent
|
||||
python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic
|
||||
python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
|
||||
python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
|
||||
python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5
|
||||
python pacman.py -l testSearch -p AStarFoodSearchAgent
|
||||
python pacman.py -l trickySearch -p AStarFoodSearchAgent
|
||||
python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5
|
||||
python pacman.py -l bigSearch -p ApproximateSearchAgent -z .5 -q
|
@ -0,0 +1,281 @@
|
||||
# eightpuzzle.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import search
|
||||
import random
|
||||
|
||||
# Module Classes
|
||||
|
||||
class EightPuzzleState:
|
||||
"""
|
||||
The Eight Puzzle is described in the course textbook on
|
||||
page 64.
|
||||
|
||||
This class defines the mechanics of the puzzle itself. The
|
||||
task of recasting this puzzle as a search problem is left to
|
||||
the EightPuzzleSearchProblem class.
|
||||
"""
|
||||
|
||||
def __init__( self, numbers ):
|
||||
"""
|
||||
Constructs a new eight puzzle from an ordering of numbers.
|
||||
|
||||
numbers: a list of integers from 0 to 8 representing an
|
||||
instance of the eight puzzle. 0 represents the blank
|
||||
space. Thus, the list
|
||||
|
||||
[1, 0, 2, 3, 4, 5, 6, 7, 8]
|
||||
|
||||
represents the eight puzzle:
|
||||
-------------
|
||||
| 1 | | 2 |
|
||||
-------------
|
||||
| 3 | 4 | 5 |
|
||||
-------------
|
||||
| 6 | 7 | 8 |
|
||||
------------
|
||||
|
||||
The configuration of the puzzle is stored in a 2-dimensional
|
||||
list (a list of lists) 'cells'.
|
||||
"""
|
||||
self.cells = []
|
||||
numbers = numbers[:] # Make a copy so as not to cause side-effects.
|
||||
numbers.reverse()
|
||||
for row in range( 3 ):
|
||||
self.cells.append( [] )
|
||||
for col in range( 3 ):
|
||||
self.cells[row].append( numbers.pop() )
|
||||
if self.cells[row][col] == 0:
|
||||
self.blankLocation = row, col
|
||||
|
||||
def isGoal( self ):
|
||||
"""
|
||||
Checks to see if the puzzle is in its goal state.
|
||||
|
||||
-------------
|
||||
| | 1 | 2 |
|
||||
-------------
|
||||
| 3 | 4 | 5 |
|
||||
-------------
|
||||
| 6 | 7 | 8 |
|
||||
-------------
|
||||
|
||||
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).isGoal()
|
||||
True
|
||||
|
||||
>>> EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).isGoal()
|
||||
False
|
||||
"""
|
||||
current = 0
|
||||
for row in range( 3 ):
|
||||
for col in range( 3 ):
|
||||
if current != self.cells[row][col]:
|
||||
return False
|
||||
current += 1
|
||||
return True
|
||||
|
||||
def legalMoves( self ):
|
||||
"""
|
||||
Returns a list of legal moves from the current state.
|
||||
|
||||
Moves consist of moving the blank space up, down, left or right.
|
||||
These are encoded as 'up', 'down', 'left' and 'right' respectively.
|
||||
|
||||
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).legalMoves()
|
||||
['down', 'right']
|
||||
"""
|
||||
moves = []
|
||||
row, col = self.blankLocation
|
||||
if(row != 0):
|
||||
moves.append('up')
|
||||
if(row != 2):
|
||||
moves.append('down')
|
||||
if(col != 0):
|
||||
moves.append('left')
|
||||
if(col != 2):
|
||||
moves.append('right')
|
||||
return moves
|
||||
|
||||
def result(self, move):
|
||||
"""
|
||||
Returns a new eightPuzzle with the current state and blankLocation
|
||||
updated based on the provided move.
|
||||
|
||||
The move should be a string drawn from a list returned by legalMoves.
|
||||
Illegal moves will raise an exception, which may be an array bounds
|
||||
exception.
|
||||
|
||||
NOTE: This function *does not* change the current object. Instead,
|
||||
it returns a new object.
|
||||
"""
|
||||
row, col = self.blankLocation
|
||||
if(move == 'up'):
|
||||
newrow = row - 1
|
||||
newcol = col
|
||||
elif(move == 'down'):
|
||||
newrow = row + 1
|
||||
newcol = col
|
||||
elif(move == 'left'):
|
||||
newrow = row
|
||||
newcol = col - 1
|
||||
elif(move == 'right'):
|
||||
newrow = row
|
||||
newcol = col + 1
|
||||
else:
|
||||
raise "Illegal Move"
|
||||
|
||||
# Create a copy of the current eightPuzzle
|
||||
newPuzzle = EightPuzzleState([0, 0, 0, 0, 0, 0, 0, 0, 0])
|
||||
newPuzzle.cells = [values[:] for values in self.cells]
|
||||
# And update it to reflect the move
|
||||
newPuzzle.cells[row][col] = self.cells[newrow][newcol]
|
||||
newPuzzle.cells[newrow][newcol] = self.cells[row][col]
|
||||
newPuzzle.blankLocation = newrow, newcol
|
||||
|
||||
return newPuzzle
|
||||
|
||||
# Utilities for comparison and display
|
||||
def __eq__(self, other):
|
||||
"""
|
||||
Overloads '==' such that two eightPuzzles with the same configuration
|
||||
are equal.
|
||||
|
||||
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]) == \
|
||||
EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).result('left')
|
||||
True
|
||||
"""
|
||||
for row in range( 3 ):
|
||||
if self.cells[row] != other.cells[row]:
|
||||
return False
|
||||
return True
|
||||
|
||||
def __hash__(self):
|
||||
return hash(str(self.cells))
|
||||
|
||||
def __getAsciiString(self):
|
||||
"""
|
||||
Returns a display string for the maze
|
||||
"""
|
||||
lines = []
|
||||
horizontalLine = ('-' * (13))
|
||||
lines.append(horizontalLine)
|
||||
for row in self.cells:
|
||||
rowLine = '|'
|
||||
for col in row:
|
||||
if col == 0:
|
||||
col = ' '
|
||||
rowLine = rowLine + ' ' + col.__str__() + ' |'
|
||||
lines.append(rowLine)
|
||||
lines.append(horizontalLine)
|
||||
return '\n'.join(lines)
|
||||
|
||||
def __str__(self):
|
||||
return self.__getAsciiString()
|
||||
|
||||
# TODO: Implement The methods in this class
|
||||
|
||||
class EightPuzzleSearchProblem(search.SearchProblem):
|
||||
"""
|
||||
Implementation of a SearchProblem for the Eight Puzzle domain
|
||||
|
||||
Each state is represented by an instance of an eightPuzzle.
|
||||
"""
|
||||
def __init__(self,puzzle):
|
||||
"Creates a new EightPuzzleSearchProblem which stores search information."
|
||||
self.puzzle = puzzle
|
||||
|
||||
def getStartState(self):
|
||||
return puzzle
|
||||
|
||||
def isGoalState(self,state):
|
||||
return state.isGoal()
|
||||
|
||||
def getSuccessors(self,state):
|
||||
"""
|
||||
Returns list of (successor, action, stepCost) pairs where
|
||||
each succesor is either left, right, up, or down
|
||||
from the original state and the cost is 1.0 for each
|
||||
"""
|
||||
succ = []
|
||||
for a in state.legalMoves():
|
||||
succ.append((state.result(a), a, 1))
|
||||
return succ
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
actions: A list of actions to take
|
||||
|
||||
This method returns the total cost of a particular sequence of actions. The sequence must
|
||||
be composed of legal moves
|
||||
"""
|
||||
return len(actions)
|
||||
|
||||
EIGHT_PUZZLE_DATA = [[1, 0, 2, 3, 4, 5, 6, 7, 8],
|
||||
[1, 7, 8, 2, 3, 4, 5, 6, 0],
|
||||
[4, 3, 2, 7, 0, 5, 1, 6, 8],
|
||||
[5, 1, 3, 4, 0, 2, 6, 7, 8],
|
||||
[1, 2, 5, 7, 6, 8, 0, 4, 3],
|
||||
[0, 3, 1, 6, 8, 2, 7, 5, 4]]
|
||||
|
||||
def loadEightPuzzle(puzzleNumber):
|
||||
"""
|
||||
puzzleNumber: The number of the eight puzzle to load.
|
||||
|
||||
Returns an eight puzzle object generated from one of the
|
||||
provided puzzles in EIGHT_PUZZLE_DATA.
|
||||
|
||||
puzzleNumber can range from 0 to 5.
|
||||
|
||||
>>> print loadEightPuzzle(0)
|
||||
-------------
|
||||
| 1 | | 2 |
|
||||
-------------
|
||||
| 3 | 4 | 5 |
|
||||
-------------
|
||||
| 6 | 7 | 8 |
|
||||
-------------
|
||||
"""
|
||||
return EightPuzzleState(EIGHT_PUZZLE_DATA[puzzleNumber])
|
||||
|
||||
def createRandomEightPuzzle(moves=100):
|
||||
"""
|
||||
moves: number of random moves to apply
|
||||
|
||||
Creates a random eight puzzle by applying
|
||||
a series of 'moves' random moves to a solved
|
||||
puzzle.
|
||||
"""
|
||||
puzzle = EightPuzzleState([0,1,2,3,4,5,6,7,8])
|
||||
for i in range(moves):
|
||||
# Execute a random legal move
|
||||
puzzle = puzzle.result(random.sample(puzzle.legalMoves(), 1)[0])
|
||||
return puzzle
|
||||
|
||||
if __name__ == '__main__':
|
||||
puzzle = createRandomEightPuzzle(25)
|
||||
print('A random puzzle:')
|
||||
print(puzzle)
|
||||
|
||||
problem = EightPuzzleSearchProblem(puzzle)
|
||||
path = search.breadthFirstSearch(problem)
|
||||
print('BFS found a path of %d moves: %s' % (len(path), str(path)))
|
||||
curr = puzzle
|
||||
i = 1
|
||||
for a in path:
|
||||
curr = curr.result(a)
|
||||
print('After %d move%s: %s' % (i, ("", "s")[i>1], a))
|
||||
print(curr)
|
||||
|
||||
raw_input("Press return for the next state...") # wait for key stroke
|
||||
i += 1
|
@ -0,0 +1,729 @@
|
||||
# game.py
|
||||
# -------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# game.py
|
||||
# -------
|
||||
# Licensing Information: Please do not distribute or publish solutions to this
|
||||
# project. You are free to use and extend these projects for educational
|
||||
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
|
||||
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
|
||||
|
||||
from util import *
|
||||
import time, os
|
||||
import traceback
|
||||
import sys
|
||||
|
||||
#######################
|
||||
# Parts worth reading #
|
||||
#######################
|
||||
|
||||
class Agent:
|
||||
"""
|
||||
An agent must define a getAction method, but may also define the
|
||||
following methods which will be called if they exist:
|
||||
|
||||
def registerInitialState(self, state): # inspects the starting state
|
||||
"""
|
||||
def __init__(self, index=0):
|
||||
self.index = index
|
||||
|
||||
def getAction(self, state):
|
||||
"""
|
||||
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
|
||||
must return an action from Directions.{North, South, East, West, Stop}
|
||||
"""
|
||||
raiseNotDefined()
|
||||
|
||||
class Directions:
|
||||
NORTH = 'North'
|
||||
SOUTH = 'South'
|
||||
EAST = 'East'
|
||||
WEST = 'West'
|
||||
STOP = 'Stop'
|
||||
|
||||
LEFT = {NORTH: WEST,
|
||||
SOUTH: EAST,
|
||||
EAST: NORTH,
|
||||
WEST: SOUTH,
|
||||
STOP: STOP}
|
||||
|
||||
RIGHT = dict([(y,x) for x, y in LEFT.items()])
|
||||
|
||||
REVERSE = {NORTH: SOUTH,
|
||||
SOUTH: NORTH,
|
||||
EAST: WEST,
|
||||
WEST: EAST,
|
||||
STOP: STOP}
|
||||
|
||||
class Configuration:
|
||||
"""
|
||||
A Configuration holds the (x,y) coordinate of a character, along with its
|
||||
traveling direction.
|
||||
|
||||
The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
|
||||
horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1).
|
||||
"""
|
||||
|
||||
def __init__(self, pos, direction):
|
||||
self.pos = pos
|
||||
self.direction = direction
|
||||
|
||||
def getPosition(self):
|
||||
return (self.pos)
|
||||
|
||||
def getDirection(self):
|
||||
return self.direction
|
||||
|
||||
def isInteger(self):
|
||||
x,y = self.pos
|
||||
return x == int(x) and y == int(y)
|
||||
|
||||
def __eq__(self, other):
|
||||
if other == None: return False
|
||||
return (self.pos == other.pos and self.direction == other.direction)
|
||||
|
||||
def __hash__(self):
|
||||
x = hash(self.pos)
|
||||
y = hash(self.direction)
|
||||
return hash(x + 13 * y)
|
||||
|
||||
def __str__(self):
|
||||
return "(x,y)="+str(self.pos)+", "+str(self.direction)
|
||||
|
||||
def generateSuccessor(self, vector):
|
||||
"""
|
||||
Generates a new configuration reached by translating the current
|
||||
configuration by the action vector. This is a low-level call and does
|
||||
not attempt to respect the legality of the movement.
|
||||
|
||||
Actions are movement vectors.
|
||||
"""
|
||||
x, y= self.pos
|
||||
dx, dy = vector
|
||||
direction = Actions.vectorToDirection(vector)
|
||||
if direction == Directions.STOP:
|
||||
direction = self.direction # There is no stop direction
|
||||
return Configuration((x + dx, y+dy), direction)
|
||||
|
||||
class AgentState:
|
||||
"""
|
||||
AgentStates hold the state of an agent (configuration, speed, scared, etc).
|
||||
"""
|
||||
|
||||
def __init__( self, startConfiguration, isPacman ):
|
||||
self.start = startConfiguration
|
||||
self.configuration = startConfiguration
|
||||
self.isPacman = isPacman
|
||||
self.scaredTimer = 0
|
||||
self.numCarrying = 0
|
||||
self.numReturned = 0
|
||||
|
||||
def __str__( self ):
|
||||
if self.isPacman:
|
||||
return "Pacman: " + str( self.configuration )
|
||||
else:
|
||||
return "Ghost: " + str( self.configuration )
|
||||
|
||||
def __eq__( self, other ):
|
||||
if other == None:
|
||||
return False
|
||||
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer
|
||||
|
||||
def __hash__(self):
|
||||
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))
|
||||
|
||||
def copy( self ):
|
||||
state = AgentState( self.start, self.isPacman )
|
||||
state.configuration = self.configuration
|
||||
state.scaredTimer = self.scaredTimer
|
||||
state.numCarrying = self.numCarrying
|
||||
state.numReturned = self.numReturned
|
||||
return state
|
||||
|
||||
def getPosition(self):
|
||||
if self.configuration == None: return None
|
||||
return self.configuration.getPosition()
|
||||
|
||||
def getDirection(self):
|
||||
return self.configuration.getDirection()
|
||||
|
||||
class Grid:
|
||||
"""
|
||||
A 2-dimensional array of objects backed by a list of lists. Data is accessed
|
||||
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
|
||||
y vertical and the origin (0,0) in the bottom left corner.
|
||||
|
||||
The __str__ method constructs an output that is oriented like a pacman board.
|
||||
"""
|
||||
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
|
||||
if initialValue not in [False, True]: raise Exception('Grids can only contain booleans')
|
||||
self.CELLS_PER_INT = 30
|
||||
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.data = [[initialValue for y in range(height)] for x in range(width)]
|
||||
if bitRepresentation:
|
||||
self._unpackBits(bitRepresentation)
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.data[i]
|
||||
|
||||
def __setitem__(self, key, item):
|
||||
self.data[key] = item
|
||||
|
||||
def __str__(self):
|
||||
out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
|
||||
out.reverse()
|
||||
return '\n'.join([''.join(x) for x in out])
|
||||
|
||||
def __eq__(self, other):
|
||||
if other == None: return False
|
||||
return self.data == other.data
|
||||
|
||||
def __hash__(self):
|
||||
# return hash(str(self))
|
||||
base = 1
|
||||
h = 0
|
||||
for l in self.data:
|
||||
for i in l:
|
||||
if i:
|
||||
h += base
|
||||
base *= 2
|
||||
return hash(h)
|
||||
|
||||
def copy(self):
|
||||
g = Grid(self.width, self.height)
|
||||
g.data = [x[:] for x in self.data]
|
||||
return g
|
||||
|
||||
def deepCopy(self):
|
||||
return self.copy()
|
||||
|
||||
def shallowCopy(self):
|
||||
g = Grid(self.width, self.height)
|
||||
g.data = self.data
|
||||
return g
|
||||
|
||||
def count(self, item =True ):
|
||||
return sum([x.count(item) for x in self.data])
|
||||
|
||||
def asList(self, key = True):
|
||||
list = []
|
||||
for x in range(self.width):
|
||||
for y in range(self.height):
|
||||
if self[x][y] == key: list.append( (x,y) )
|
||||
return list
|
||||
|
||||
def packBits(self):
|
||||
"""
|
||||
Returns an efficient int list representation
|
||||
|
||||
(width, height, bitPackedInts...)
|
||||
"""
|
||||
bits = [self.width, self.height]
|
||||
currentInt = 0
|
||||
for i in range(self.height * self.width):
|
||||
bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
|
||||
x, y = self._cellIndexToPosition(i)
|
||||
if self[x][y]:
|
||||
currentInt += 2 ** bit
|
||||
if (i + 1) % self.CELLS_PER_INT == 0:
|
||||
bits.append(currentInt)
|
||||
currentInt = 0
|
||||
bits.append(currentInt)
|
||||
return tuple(bits)
|
||||
|
||||
def _cellIndexToPosition(self, index):
|
||||
x = index / self.height
|
||||
y = index % self.height
|
||||
return x, y
|
||||
|
||||
def _unpackBits(self, bits):
|
||||
"""
|
||||
Fills in data from a bit-level representation
|
||||
"""
|
||||
cell = 0
|
||||
for packed in bits:
|
||||
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
|
||||
if cell == self.width * self.height: break
|
||||
x, y = self._cellIndexToPosition(cell)
|
||||
self[x][y] = bit
|
||||
cell += 1
|
||||
|
||||
def _unpackInt(self, packed, size):
|
||||
bools = []
|
||||
if packed < 0: raise ValueError, "must be a positive integer"
|
||||
for i in range(size):
|
||||
n = 2 ** (self.CELLS_PER_INT - i - 1)
|
||||
if packed >= n:
|
||||
bools.append(True)
|
||||
packed -= n
|
||||
else:
|
||||
bools.append(False)
|
||||
return bools
|
||||
|
||||
def reconstituteGrid(bitRep):
|
||||
if type(bitRep) is not type((1,2)):
|
||||
return bitRep
|
||||
width, height = bitRep[:2]
|
||||
return Grid(width, height, bitRepresentation= bitRep[2:])
|
||||
|
||||
####################################
|
||||
# Parts you shouldn't have to read #
|
||||
####################################
|
||||
|
||||
class Actions:
|
||||
"""
|
||||
A collection of static methods for manipulating move actions.
|
||||
"""
|
||||
# Directions
|
||||
_directions = {Directions.NORTH: (0, 1),
|
||||
Directions.SOUTH: (0, -1),
|
||||
Directions.EAST: (1, 0),
|
||||
Directions.WEST: (-1, 0),
|
||||
Directions.STOP: (0, 0)}
|
||||
|
||||
_directionsAsList = _directions.items()
|
||||
|
||||
TOLERANCE = .001
|
||||
|
||||
def reverseDirection(action):
|
||||
if action == Directions.NORTH:
|
||||
return Directions.SOUTH
|
||||
if action == Directions.SOUTH:
|
||||
return Directions.NORTH
|
||||
if action == Directions.EAST:
|
||||
return Directions.WEST
|
||||
if action == Directions.WEST:
|
||||
return Directions.EAST
|
||||
return action
|
||||
reverseDirection = staticmethod(reverseDirection)
|
||||
|
||||
def vectorToDirection(vector):
|
||||
dx, dy = vector
|
||||
if dy > 0:
|
||||
return Directions.NORTH
|
||||
if dy < 0:
|
||||
return Directions.SOUTH
|
||||
if dx < 0:
|
||||
return Directions.WEST
|
||||
if dx > 0:
|
||||
return Directions.EAST
|
||||
return Directions.STOP
|
||||
vectorToDirection = staticmethod(vectorToDirection)
|
||||
|
||||
def directionToVector(direction, speed = 1.0):
|
||||
dx, dy = Actions._directions[direction]
|
||||
return (dx * speed, dy * speed)
|
||||
directionToVector = staticmethod(directionToVector)
|
||||
|
||||
def getPossibleActions(config, walls):
|
||||
possible = []
|
||||
x, y = config.pos
|
||||
x_int, y_int = int(x + 0.5), int(y + 0.5)
|
||||
|
||||
# In between grid points, all agents must continue straight
|
||||
if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE):
|
||||
return [config.getDirection()]
|
||||
|
||||
for dir, vec in Actions._directionsAsList:
|
||||
dx, dy = vec
|
||||
next_y = y_int + dy
|
||||
next_x = x_int + dx
|
||||
if not walls[next_x][next_y]: possible.append(dir)
|
||||
|
||||
return possible
|
||||
|
||||
getPossibleActions = staticmethod(getPossibleActions)
|
||||
|
||||
def getLegalNeighbors(position, walls):
|
||||
x,y = position
|
||||
x_int, y_int = int(x + 0.5), int(y + 0.5)
|
||||
neighbors = []
|
||||
for dir, vec in Actions._directionsAsList:
|
||||
dx, dy = vec
|
||||
next_x = x_int + dx
|
||||
if next_x < 0 or next_x == walls.width: continue
|
||||
next_y = y_int + dy
|
||||
if next_y < 0 or next_y == walls.height: continue
|
||||
if not walls[next_x][next_y]: neighbors.append((next_x, next_y))
|
||||
return neighbors
|
||||
getLegalNeighbors = staticmethod(getLegalNeighbors)
|
||||
|
||||
def getSuccessor(position, action):
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = position
|
||||
return (x + dx, y + dy)
|
||||
getSuccessor = staticmethod(getSuccessor)
|
||||
|
||||
class GameStateData:
|
||||
"""
|
||||
|
||||
"""
|
||||
def __init__( self, prevState = None ):
|
||||
"""
|
||||
Generates a new data packet by copying information from its predecessor.
|
||||
"""
|
||||
if prevState != None:
|
||||
self.food = prevState.food.shallowCopy()
|
||||
self.capsules = prevState.capsules[:]
|
||||
self.agentStates = self.copyAgentStates( prevState.agentStates )
|
||||
self.layout = prevState.layout
|
||||
self._eaten = prevState._eaten
|
||||
self.score = prevState.score
|
||||
|
||||
self._foodEaten = None
|
||||
self._foodAdded = None
|
||||
self._capsuleEaten = None
|
||||
self._agentMoved = None
|
||||
self._lose = False
|
||||
self._win = False
|
||||
self.scoreChange = 0
|
||||
|
||||
def deepCopy( self ):
|
||||
state = GameStateData( self )
|
||||
state.food = self.food.deepCopy()
|
||||
state.layout = self.layout.deepCopy()
|
||||
state._agentMoved = self._agentMoved
|
||||
state._foodEaten = self._foodEaten
|
||||
state._foodAdded = self._foodAdded
|
||||
state._capsuleEaten = self._capsuleEaten
|
||||
return state
|
||||
|
||||
def copyAgentStates( self, agentStates ):
|
||||
copiedStates = []
|
||||
for agentState in agentStates:
|
||||
copiedStates.append( agentState.copy() )
|
||||
return copiedStates
|
||||
|
||||
def __eq__( self, other ):
|
||||
"""
|
||||
Allows two states to be compared.
|
||||
"""
|
||||
if other == None: return False
|
||||
# TODO Check for type of other
|
||||
if not self.agentStates == other.agentStates: return False
|
||||
if not self.food == other.food: return False
|
||||
if not self.capsules == other.capsules: return False
|
||||
if not self.score == other.score: return False
|
||||
return True
|
||||
|
||||
def __hash__( self ):
|
||||
"""
|
||||
Allows states to be keys of dictionaries.
|
||||
"""
|
||||
for i, state in enumerate( self.agentStates ):
|
||||
try:
|
||||
int(hash(state))
|
||||
except TypeError, e:
|
||||
print e
|
||||
#hash(state)
|
||||
return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 )
|
||||
|
||||
def __str__( self ):
|
||||
width, height = self.layout.width, self.layout.height
|
||||
map = Grid(width, height)
|
||||
if type(self.food) == type((1,2)):
|
||||
self.food = reconstituteGrid(self.food)
|
||||
for x in range(width):
|
||||
for y in range(height):
|
||||
food, walls = self.food, self.layout.walls
|
||||
map[x][y] = self._foodWallStr(food[x][y], walls[x][y])
|
||||
|
||||
for agentState in self.agentStates:
|
||||
if agentState == None: continue
|
||||
if agentState.configuration == None: continue
|
||||
x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )]
|
||||
agent_dir = agentState.configuration.direction
|
||||
if agentState.isPacman:
|
||||
map[x][y] = self._pacStr( agent_dir )
|
||||
else:
|
||||
map[x][y] = self._ghostStr( agent_dir )
|
||||
|
||||
for x, y in self.capsules:
|
||||
map[x][y] = 'o'
|
||||
|
||||
return str(map) + ("\nScore: %d\n" % self.score)
|
||||
|
||||
def _foodWallStr( self, hasFood, hasWall ):
|
||||
if hasFood:
|
||||
return '.'
|
||||
elif hasWall:
|
||||
return '%'
|
||||
else:
|
||||
return ' '
|
||||
|
||||
def _pacStr( self, dir ):
|
||||
if dir == Directions.NORTH:
|
||||
return 'v'
|
||||
if dir == Directions.SOUTH:
|
||||
return '^'
|
||||
if dir == Directions.WEST:
|
||||
return '>'
|
||||
return '<'
|
||||
|
||||
def _ghostStr( self, dir ):
|
||||
return 'G'
|
||||
if dir == Directions.NORTH:
|
||||
return 'M'
|
||||
if dir == Directions.SOUTH:
|
||||
return 'W'
|
||||
if dir == Directions.WEST:
|
||||
return '3'
|
||||
return 'E'
|
||||
|
||||
def initialize( self, layout, numGhostAgents ):
|
||||
"""
|
||||
Creates an initial game state from a layout array (see layout.py).
|
||||
"""
|
||||
self.food = layout.food.copy()
|
||||
#self.capsules = []
|
||||
self.capsules = layout.capsules[:]
|
||||
self.layout = layout
|
||||
self.score = 0
|
||||
self.scoreChange = 0
|
||||
|
||||
self.agentStates = []
|
||||
numGhosts = 0
|
||||
for isPacman, pos in layout.agentPositions:
|
||||
if not isPacman:
|
||||
if numGhosts == numGhostAgents: continue # Max ghosts reached already
|
||||
else: numGhosts += 1
|
||||
self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) )
|
||||
self._eaten = [False for a in self.agentStates]
|
||||
|
||||
try:
|
||||
import boinc
|
||||
_BOINC_ENABLED = True
|
||||
except:
|
||||
_BOINC_ENABLED = False
|
||||
|
||||
class Game:
|
||||
"""
|
||||
The Game manages the control flow, soliciting actions from agents.
|
||||
"""
|
||||
|
||||
def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ):
|
||||
self.agentCrashed = False
|
||||
self.agents = agents
|
||||
self.display = display
|
||||
self.rules = rules
|
||||
self.startingIndex = startingIndex
|
||||
self.gameOver = False
|
||||
self.muteAgents = muteAgents
|
||||
self.catchExceptions = catchExceptions
|
||||
self.moveHistory = []
|
||||
self.totalAgentTimes = [0 for agent in agents]
|
||||
self.totalAgentTimeWarnings = [0 for agent in agents]
|
||||
self.agentTimeout = False
|
||||
import cStringIO
|
||||
self.agentOutput = [cStringIO.StringIO() for agent in agents]
|
||||
|
||||
def getProgress(self):
|
||||
if self.gameOver:
|
||||
return 1.0
|
||||
else:
|
||||
return self.rules.getProgress(self)
|
||||
|
||||
def _agentCrash( self, agentIndex, quiet=False):
|
||||
"Helper method for handling agent crashes"
|
||||
if not quiet: traceback.print_exc()
|
||||
self.gameOver = True
|
||||
self.agentCrashed = True
|
||||
self.rules.agentCrash(self, agentIndex)
|
||||
|
||||
OLD_STDOUT = None
|
||||
OLD_STDERR = None
|
||||
|
||||
def mute(self, agentIndex):
|
||||
if not self.muteAgents: return
|
||||
global OLD_STDOUT, OLD_STDERR
|
||||
import cStringIO
|
||||
OLD_STDOUT = sys.stdout
|
||||
OLD_STDERR = sys.stderr
|
||||
sys.stdout = self.agentOutput[agentIndex]
|
||||
sys.stderr = self.agentOutput[agentIndex]
|
||||
|
||||
def unmute(self):
|
||||
if not self.muteAgents: return
|
||||
global OLD_STDOUT, OLD_STDERR
|
||||
# Revert stdout/stderr to originals
|
||||
sys.stdout = OLD_STDOUT
|
||||
sys.stderr = OLD_STDERR
|
||||
|
||||
|
||||
def run( self ):
|
||||
"""
|
||||
Main control loop for game play.
|
||||
"""
|
||||
self.display.initialize(self.state.data)
|
||||
self.numMoves = 0
|
||||
|
||||
###self.display.initialize(self.state.makeObservation(1).data)
|
||||
# inform learning agents of the game start
|
||||
for i in range(len(self.agents)):
|
||||
agent = self.agents[i]
|
||||
if not agent:
|
||||
self.mute(i)
|
||||
# this is a null agent, meaning it failed to load
|
||||
# the other team wins
|
||||
print >>sys.stderr, "Agent %d failed to load" % i
|
||||
self.unmute()
|
||||
self._agentCrash(i, quiet=True)
|
||||
return
|
||||
if ("registerInitialState" in dir(agent)):
|
||||
self.mute(i)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
|
||||
try:
|
||||
start_time = time.time()
|
||||
timed_func(self.state.deepCopy())
|
||||
time_taken = time.time() - start_time
|
||||
self.totalAgentTimes[i] += time_taken
|
||||
except TimeoutFunctionException:
|
||||
print >>sys.stderr, "Agent %d ran out of time on startup!" % i
|
||||
self.unmute()
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(i, quiet=True)
|
||||
return
|
||||
except Exception,data:
|
||||
self._agentCrash(i, quiet=False)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
agent.registerInitialState(self.state.deepCopy())
|
||||
## TODO: could this exceed the total time
|
||||
self.unmute()
|
||||
|
||||
agentIndex = self.startingIndex
|
||||
numAgents = len( self.agents )
|
||||
|
||||
while not self.gameOver:
|
||||
# Fetch the next agent
|
||||
agent = self.agents[agentIndex]
|
||||
move_time = 0
|
||||
skip_action = False
|
||||
# Generate an observation of the state
|
||||
if 'observationFunction' in dir( agent ):
|
||||
self.mute(agentIndex)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex)))
|
||||
try:
|
||||
start_time = time.time()
|
||||
observation = timed_func(self.state.deepCopy())
|
||||
except TimeoutFunctionException:
|
||||
skip_action = True
|
||||
move_time += time.time() - start_time
|
||||
self.unmute()
|
||||
except Exception,data:
|
||||
self._agentCrash(agentIndex, quiet=False)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
observation = agent.observationFunction(self.state.deepCopy())
|
||||
self.unmute()
|
||||
else:
|
||||
observation = self.state.deepCopy()
|
||||
|
||||
# Solicit an action
|
||||
action = None
|
||||
self.mute(agentIndex)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time))
|
||||
try:
|
||||
start_time = time.time()
|
||||
if skip_action:
|
||||
raise TimeoutFunctionException()
|
||||
action = timed_func( observation )
|
||||
except TimeoutFunctionException:
|
||||
print >>sys.stderr, "Agent %d timed out on a single move!" % agentIndex
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
|
||||
move_time += time.time() - start_time
|
||||
|
||||
if move_time > self.rules.getMoveWarningTime(agentIndex):
|
||||
self.totalAgentTimeWarnings[agentIndex] += 1
|
||||
print >>sys.stderr, "Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex])
|
||||
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
|
||||
print >>sys.stderr, "Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex])
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
|
||||
self.totalAgentTimes[agentIndex] += move_time
|
||||
#print "Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex])
|
||||
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
|
||||
print >>sys.stderr, "Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex])
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
self.unmute()
|
||||
except Exception,data:
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
action = agent.getAction(observation)
|
||||
self.unmute()
|
||||
|
||||
# Execute the action
|
||||
self.moveHistory.append( (agentIndex, action) )
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
self.state = self.state.generateSuccessor( agentIndex, action )
|
||||
except Exception,data:
|
||||
self.mute(agentIndex)
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
self.state = self.state.generateSuccessor( agentIndex, action )
|
||||
|
||||
# Change the display
|
||||
self.display.update( self.state.data )
|
||||
###idx = agentIndex - agentIndex % 2 + 1
|
||||
###self.display.update( self.state.makeObservation(idx).data )
|
||||
|
||||
# Allow for game specific conditions (winning, losing, etc.)
|
||||
self.rules.process(self.state, self)
|
||||
# Track progress
|
||||
if agentIndex == numAgents + 1: self.numMoves += 1
|
||||
# Next agent
|
||||
agentIndex = ( agentIndex + 1 ) % numAgents
|
||||
|
||||
if _BOINC_ENABLED:
|
||||
boinc.set_fraction_done(self.getProgress())
|
||||
|
||||
# inform a learning agent of the game result
|
||||
for agentIndex, agent in enumerate(self.agents):
|
||||
if "final" in dir( agent ) :
|
||||
try:
|
||||
self.mute(agentIndex)
|
||||
agent.final( self.state )
|
||||
self.unmute()
|
||||
except Exception,data:
|
||||
if not self.catchExceptions: raise
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
self.display.finish()
|
Binary file not shown.
@ -0,0 +1,81 @@
|
||||
# ghostAgents.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from game import Agent
|
||||
from game import Actions
|
||||
from game import Directions
|
||||
import random
|
||||
from util import manhattanDistance
|
||||
import util
|
||||
|
||||
class GhostAgent( Agent ):
|
||||
def __init__( self, index ):
|
||||
self.index = index
|
||||
|
||||
def getAction( self, state ):
|
||||
dist = self.getDistribution(state)
|
||||
if len(dist) == 0:
|
||||
return Directions.STOP
|
||||
else:
|
||||
return util.chooseFromDistribution( dist )
|
||||
|
||||
def getDistribution(self, state):
|
||||
"Returns a Counter encoding a distribution over actions from the provided state."
|
||||
util.raiseNotDefined()
|
||||
|
||||
class RandomGhost( GhostAgent ):
|
||||
"A ghost that chooses a legal action uniformly at random."
|
||||
def getDistribution( self, state ):
|
||||
dist = util.Counter()
|
||||
for a in state.getLegalActions( self.index ): dist[a] = 1.0
|
||||
dist.normalize()
|
||||
return dist
|
||||
|
||||
class DirectionalGhost( GhostAgent ):
|
||||
"A ghost that prefers to rush Pacman, or flee when scared."
|
||||
def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ):
|
||||
self.index = index
|
||||
self.prob_attack = prob_attack
|
||||
self.prob_scaredFlee = prob_scaredFlee
|
||||
|
||||
def getDistribution( self, state ):
|
||||
# Read variables from state
|
||||
ghostState = state.getGhostState( self.index )
|
||||
legalActions = state.getLegalActions( self.index )
|
||||
pos = state.getGhostPosition( self.index )
|
||||
isScared = ghostState.scaredTimer > 0
|
||||
|
||||
speed = 1
|
||||
if isScared: speed = 0.5
|
||||
|
||||
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
|
||||
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
|
||||
pacmanPosition = state.getPacmanPosition()
|
||||
|
||||
# Select best actions given the state
|
||||
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
|
||||
if isScared:
|
||||
bestScore = max( distancesToPacman )
|
||||
bestProb = self.prob_scaredFlee
|
||||
else:
|
||||
bestScore = min( distancesToPacman )
|
||||
bestProb = self.prob_attack
|
||||
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
|
||||
|
||||
# Construct distribution
|
||||
dist = util.Counter()
|
||||
for a in bestActions: dist[a] = bestProb / len(bestActions)
|
||||
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
|
||||
dist.normalize()
|
||||
return dist
|
Binary file not shown.
@ -0,0 +1,323 @@
|
||||
# grading.py
|
||||
# ----------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"Common code for autograders"
|
||||
|
||||
import cgi
|
||||
import time
|
||||
import sys
|
||||
import json
|
||||
import traceback
|
||||
import pdb
|
||||
from collections import defaultdict
|
||||
import util
|
||||
|
||||
class Grades:
|
||||
"A data structure for project grades, along with formatting code to display them"
|
||||
def __init__(self, projectName, questionsAndMaxesList,
|
||||
gsOutput=False, edxOutput=False, muteOutput=False):
|
||||
"""
|
||||
Defines the grading scheme for a project
|
||||
projectName: project name
|
||||
questionsAndMaxesDict: a list of (question name, max points per question)
|
||||
"""
|
||||
self.questions = [el[0] for el in questionsAndMaxesList]
|
||||
self.maxes = dict(questionsAndMaxesList)
|
||||
self.points = Counter()
|
||||
self.messages = dict([(q, []) for q in self.questions])
|
||||
self.project = projectName
|
||||
self.start = time.localtime()[1:6]
|
||||
self.sane = True # Sanity checks
|
||||
self.currentQuestion = None # Which question we're grading
|
||||
self.edxOutput = edxOutput
|
||||
self.gsOutput = gsOutput # GradeScope output
|
||||
self.mute = muteOutput
|
||||
self.prereqs = defaultdict(set)
|
||||
|
||||
#print 'Autograder transcript for %s' % self.project
|
||||
print 'Starting on %d-%d at %d:%02d:%02d' % self.start
|
||||
|
||||
def addPrereq(self, question, prereq):
|
||||
self.prereqs[question].add(prereq)
|
||||
|
||||
def grade(self, gradingModule, exceptionMap = {}, bonusPic = False):
|
||||
"""
|
||||
Grades each question
|
||||
gradingModule: the module with all the grading functions (pass in with sys.modules[__name__])
|
||||
"""
|
||||
|
||||
completedQuestions = set([])
|
||||
for q in self.questions:
|
||||
print '\nQuestion %s' % q
|
||||
print '=' * (9 + len(q))
|
||||
print
|
||||
self.currentQuestion = q
|
||||
|
||||
incompleted = self.prereqs[q].difference(completedQuestions)
|
||||
if len(incompleted) > 0:
|
||||
prereq = incompleted.pop()
|
||||
print \
|
||||
"""*** NOTE: Make sure to complete Question %s before working on Question %s,
|
||||
*** because Question %s builds upon your answer for Question %s.
|
||||
""" % (prereq, q, q, prereq)
|
||||
continue
|
||||
|
||||
if self.mute: util.mutePrint()
|
||||
try:
|
||||
util.TimeoutFunction(getattr(gradingModule, q),1800)(self) # Call the question's function
|
||||
#TimeoutFunction(getattr(gradingModule, q),1200)(self) # Call the question's function
|
||||
except Exception, inst:
|
||||
self.addExceptionMessage(q, inst, traceback)
|
||||
self.addErrorHints(exceptionMap, inst, q[1])
|
||||
except:
|
||||
self.fail('FAIL: Terminated with a string exception.')
|
||||
finally:
|
||||
if self.mute: util.unmutePrint()
|
||||
|
||||
if self.points[q] >= self.maxes[q]:
|
||||
completedQuestions.add(q)
|
||||
|
||||
print '\n### Question %s: %d/%d ###\n' % (q, self.points[q], self.maxes[q])
|
||||
|
||||
|
||||
print '\nFinished at %d:%02d:%02d' % time.localtime()[3:6]
|
||||
print "\nProvisional grades\n=================="
|
||||
|
||||
for q in self.questions:
|
||||
print 'Question %s: %d/%d' % (q, self.points[q], self.maxes[q])
|
||||
print '------------------'
|
||||
print 'Total: %d/%d' % (self.points.totalCount(), sum(self.maxes.values()))
|
||||
if bonusPic and self.points.totalCount() == 25:
|
||||
print """
|
||||
|
||||
ALL HAIL GRANDPAC.
|
||||
LONG LIVE THE GHOSTBUSTING KING.
|
||||
|
||||
--- ---- ---
|
||||
| \ / + \ / |
|
||||
| + \--/ \--/ + |
|
||||
| + + |
|
||||
| + + + |
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
V \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
V @@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@
|
||||
/\ @@@@@@@@@@@@@@@@@@@@@@
|
||||
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@
|
||||
|
||||
"""
|
||||
print """
|
||||
Your grades are NOT yet registered. To register your grades, make sure
|
||||
to follow your instructor's guidelines to receive credit on your project.
|
||||
"""
|
||||
|
||||
if self.edxOutput:
|
||||
self.produceOutput()
|
||||
if self.gsOutput:
|
||||
self.produceGradeScopeOutput()
|
||||
|
||||
def addExceptionMessage(self, q, inst, traceback):
|
||||
"""
|
||||
Method to format the exception message, this is more complicated because
|
||||
we need to cgi.escape the traceback but wrap the exception in a <pre> tag
|
||||
"""
|
||||
self.fail('FAIL: Exception raised: %s' % inst)
|
||||
self.addMessage('')
|
||||
for line in traceback.format_exc().split('\n'):
|
||||
self.addMessage(line)
|
||||
|
||||
def addErrorHints(self, exceptionMap, errorInstance, questionNum):
|
||||
typeOf = str(type(errorInstance))
|
||||
questionName = 'q' + questionNum
|
||||
errorHint = ''
|
||||
|
||||
# question specific error hints
|
||||
if exceptionMap.get(questionName):
|
||||
questionMap = exceptionMap.get(questionName)
|
||||
if (questionMap.get(typeOf)):
|
||||
errorHint = questionMap.get(typeOf)
|
||||
# fall back to general error messages if a question specific
|
||||
# one does not exist
|
||||
if (exceptionMap.get(typeOf)):
|
||||
errorHint = exceptionMap.get(typeOf)
|
||||
|
||||
# dont include the HTML if we have no error hint
|
||||
if not errorHint:
|
||||
return ''
|
||||
|
||||
for line in errorHint.split('\n'):
|
||||
self.addMessage(line)
|
||||
|
||||
def produceGradeScopeOutput(self):
|
||||
out_dct = {}
|
||||
|
||||
# total of entire submission
|
||||
total_possible = sum(self.maxes.values())
|
||||
total_score = sum(self.points.values())
|
||||
out_dct['score'] = total_score
|
||||
out_dct['max_score'] = total_possible
|
||||
out_dct['output'] = "Total score (%d / %d)" % (total_score, total_possible)
|
||||
|
||||
# individual tests
|
||||
tests_out = []
|
||||
for name in self.questions:
|
||||
test_out = {}
|
||||
# test name
|
||||
test_out['name'] = name
|
||||
# test score
|
||||
test_out['score'] = self.points[name]
|
||||
test_out['max_score'] = self.maxes[name]
|
||||
# others
|
||||
is_correct = self.points[name] >= self.maxes[name]
|
||||
test_out['output'] = " Question {num} ({points}/{max}) {correct}".format(
|
||||
num=(name[1] if len(name) == 2 else name),
|
||||
points=test_out['score'],
|
||||
max=test_out['max_score'],
|
||||
correct=('X' if not is_correct else ''),
|
||||
)
|
||||
test_out['tags'] = []
|
||||
tests_out.append(test_out)
|
||||
out_dct['tests'] = tests_out
|
||||
|
||||
# file output
|
||||
with open('gradescope_response.json', 'w') as outfile:
|
||||
json.dump(out_dct, outfile)
|
||||
return
|
||||
|
||||
def produceOutput(self):
|
||||
edxOutput = open('edx_response.html', 'w')
|
||||
edxOutput.write("<div>")
|
||||
|
||||
# first sum
|
||||
total_possible = sum(self.maxes.values())
|
||||
total_score = sum(self.points.values())
|
||||
checkOrX = '<span class="incorrect"/>'
|
||||
if (total_score >= total_possible):
|
||||
checkOrX = '<span class="correct"/>'
|
||||
header = """
|
||||
<h3>
|
||||
Total score ({total_score} / {total_possible})
|
||||
</h3>
|
||||
""".format(total_score = total_score,
|
||||
total_possible = total_possible,
|
||||
checkOrX = checkOrX
|
||||
)
|
||||
edxOutput.write(header)
|
||||
|
||||
for q in self.questions:
|
||||
if len(q) == 2:
|
||||
name = q[1]
|
||||
else:
|
||||
name = q
|
||||
checkOrX = '<span class="incorrect"/>'
|
||||
if (self.points[q] >= self.maxes[q]):
|
||||
checkOrX = '<span class="correct"/>'
|
||||
#messages = '\n<br/>\n'.join(self.messages[q])
|
||||
messages = "<pre>%s</pre>" % '\n'.join(self.messages[q])
|
||||
output = """
|
||||
<div class="test">
|
||||
<section>
|
||||
<div class="shortform">
|
||||
Question {q} ({points}/{max}) {checkOrX}
|
||||
</div>
|
||||
<div class="longform">
|
||||
{messages}
|
||||
</div>
|
||||
</section>
|
||||
</div>
|
||||
""".format(q = name,
|
||||
max = self.maxes[q],
|
||||
messages = messages,
|
||||
checkOrX = checkOrX,
|
||||
points = self.points[q]
|
||||
)
|
||||
# print "*** output for Question %s " % q[1]
|
||||
# print output
|
||||
edxOutput.write(output)
|
||||
edxOutput.write("</div>")
|
||||
edxOutput.close()
|
||||
edxOutput = open('edx_grade', 'w')
|
||||
edxOutput.write(str(self.points.totalCount()))
|
||||
edxOutput.close()
|
||||
|
||||
def fail(self, message, raw=False):
|
||||
"Sets sanity check bit to false and outputs a message"
|
||||
self.sane = False
|
||||
self.assignZeroCredit()
|
||||
self.addMessage(message, raw)
|
||||
|
||||
def assignZeroCredit(self):
|
||||
self.points[self.currentQuestion] = 0
|
||||
|
||||
def addPoints(self, amt):
|
||||
self.points[self.currentQuestion] += amt
|
||||
|
||||
def deductPoints(self, amt):
|
||||
self.points[self.currentQuestion] -= amt
|
||||
|
||||
def assignFullCredit(self, message="", raw=False):
|
||||
self.points[self.currentQuestion] = self.maxes[self.currentQuestion]
|
||||
if message != "":
|
||||
self.addMessage(message, raw)
|
||||
|
||||
def addMessage(self, message, raw=False):
|
||||
if not raw:
|
||||
# We assume raw messages, formatted for HTML, are printed separately
|
||||
if self.mute: util.unmutePrint()
|
||||
print '*** ' + message
|
||||
if self.mute: util.mutePrint()
|
||||
message = cgi.escape(message)
|
||||
self.messages[self.currentQuestion].append(message)
|
||||
|
||||
def addMessageToEmail(self, message):
|
||||
print "WARNING**** addMessageToEmail is deprecated %s" % message
|
||||
for line in message.split('\n'):
|
||||
pass
|
||||
#print '%%% ' + line + ' %%%'
|
||||
#self.messages[self.currentQuestion].append(line)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Counter(dict):
|
||||
"""
|
||||
Dict with default 0
|
||||
"""
|
||||
def __getitem__(self, idx):
|
||||
try:
|
||||
return dict.__getitem__(self, idx)
|
||||
except KeyError:
|
||||
return 0
|
||||
|
||||
def totalCount(self):
|
||||
"""
|
||||
Returns the sum of counts for all keys.
|
||||
"""
|
||||
return sum(self.values())
|
||||
|
@ -0,0 +1,679 @@
|
||||
# graphicsDisplay.py
|
||||
# ------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from graphicsUtils import *
|
||||
import math, time
|
||||
from game import Directions
|
||||
|
||||
###########################
|
||||
# GRAPHICS DISPLAY CODE #
|
||||
###########################
|
||||
|
||||
# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
|
||||
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.
|
||||
|
||||
DEFAULT_GRID_SIZE = 30.0
|
||||
INFO_PANE_HEIGHT = 35
|
||||
BACKGROUND_COLOR = formatColor(0,0,0)
|
||||
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
|
||||
INFO_PANE_COLOR = formatColor(.4,.4,0)
|
||||
SCORE_COLOR = formatColor(.9, .9, .9)
|
||||
PACMAN_OUTLINE_WIDTH = 2
|
||||
PACMAN_CAPTURE_OUTLINE_WIDTH = 4
|
||||
|
||||
GHOST_COLORS = []
|
||||
GHOST_COLORS.append(formatColor(.9,0,0)) # Red
|
||||
GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue
|
||||
GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange
|
||||
GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green
|
||||
GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow
|
||||
GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple
|
||||
|
||||
TEAM_COLORS = GHOST_COLORS[:2]
|
||||
|
||||
GHOST_SHAPE = [
|
||||
( 0, 0.3 ),
|
||||
( 0.25, 0.75 ),
|
||||
( 0.5, 0.3 ),
|
||||
( 0.75, 0.75 ),
|
||||
( 0.75, -0.5 ),
|
||||
( 0.5, -0.75 ),
|
||||
(-0.5, -0.75 ),
|
||||
(-0.75, -0.5 ),
|
||||
(-0.75, 0.75 ),
|
||||
(-0.5, 0.3 ),
|
||||
(-0.25, 0.75 )
|
||||
]
|
||||
GHOST_SIZE = 0.65
|
||||
SCARED_COLOR = formatColor(1,1,1)
|
||||
|
||||
GHOST_VEC_COLORS = map(colorToVector, GHOST_COLORS)
|
||||
|
||||
PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255)
|
||||
PACMAN_SCALE = 0.5
|
||||
#pacman_speed = 0.25
|
||||
|
||||
# Food
|
||||
FOOD_COLOR = formatColor(1,1,1)
|
||||
FOOD_SIZE = 0.1
|
||||
|
||||
# Laser
|
||||
LASER_COLOR = formatColor(1,0,0)
|
||||
LASER_SIZE = 0.02
|
||||
|
||||
# Capsule graphics
|
||||
CAPSULE_COLOR = formatColor(1,1,1)
|
||||
CAPSULE_SIZE = 0.25
|
||||
|
||||
# Drawing walls
|
||||
WALL_RADIUS = 0.15
|
||||
|
||||
class InfoPane:
|
||||
def __init__(self, layout, gridSize):
|
||||
self.gridSize = gridSize
|
||||
self.width = (layout.width) * gridSize
|
||||
self.base = (layout.height + 1) * gridSize
|
||||
self.height = INFO_PANE_HEIGHT
|
||||
self.fontSize = 24
|
||||
self.textColor = PACMAN_COLOR
|
||||
self.drawPane()
|
||||
|
||||
def toScreen(self, pos, y = None):
|
||||
"""
|
||||
Translates a point relative from the bottom left of the info pane.
|
||||
"""
|
||||
if y == None:
|
||||
x,y = pos
|
||||
else:
|
||||
x = pos
|
||||
|
||||
x = self.gridSize + x # Margin
|
||||
y = self.base + y
|
||||
return x,y
|
||||
|
||||
def drawPane(self):
|
||||
self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold")
|
||||
|
||||
def initializeGhostDistances(self, distances):
|
||||
self.ghostDistanceText = []
|
||||
|
||||
size = 20
|
||||
if self.width < 240:
|
||||
size = 12
|
||||
if self.width < 160:
|
||||
size = 10
|
||||
|
||||
for i, d in enumerate(distances):
|
||||
t = text( self.toScreen(self.width/2 + self.width/8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold")
|
||||
self.ghostDistanceText.append(t)
|
||||
|
||||
def updateScore(self, score):
|
||||
changeText(self.scoreText, "SCORE: % 4d" % score)
|
||||
|
||||
def setTeam(self, isBlue):
|
||||
text = "RED TEAM"
|
||||
if isBlue: text = "BLUE TEAM"
|
||||
self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold")
|
||||
|
||||
def updateGhostDistances(self, distances):
|
||||
if len(distances) == 0: return
|
||||
if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances)
|
||||
else:
|
||||
for i, d in enumerate(distances):
|
||||
changeText(self.ghostDistanceText[i], d)
|
||||
|
||||
def drawGhost(self):
|
||||
pass
|
||||
|
||||
def drawPacman(self):
|
||||
pass
|
||||
|
||||
def drawWarning(self):
|
||||
pass
|
||||
|
||||
def clearIcon(self):
|
||||
pass
|
||||
|
||||
def updateMessage(self, message):
|
||||
pass
|
||||
|
||||
def clearMessage(self):
|
||||
pass
|
||||
|
||||
|
||||
class PacmanGraphics:
|
||||
def __init__(self, zoom=1.0, frameTime=0.0, capture=False):
|
||||
self.have_window = 0
|
||||
self.currentGhostImages = {}
|
||||
self.pacmanImage = None
|
||||
self.zoom = zoom
|
||||
self.gridSize = DEFAULT_GRID_SIZE * zoom
|
||||
self.capture = capture
|
||||
self.frameTime = frameTime
|
||||
|
||||
def checkNullDisplay(self):
|
||||
return False
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
self.isBlue = isBlue
|
||||
self.startGraphics(state)
|
||||
|
||||
# self.drawDistributions(state)
|
||||
self.distributionImages = None # Initialized lazily
|
||||
self.drawStaticObjects(state)
|
||||
self.drawAgentObjects(state)
|
||||
|
||||
# Information
|
||||
self.previousState = state
|
||||
|
||||
def startGraphics(self, state):
|
||||
self.layout = state.layout
|
||||
layout = self.layout
|
||||
self.width = layout.width
|
||||
self.height = layout.height
|
||||
self.make_window(self.width, self.height)
|
||||
self.infoPane = InfoPane(layout, self.gridSize)
|
||||
self.currentState = layout
|
||||
|
||||
def drawDistributions(self, state):
|
||||
walls = state.layout.walls
|
||||
dist = []
|
||||
for x in range(walls.width):
|
||||
distx = []
|
||||
dist.append(distx)
|
||||
for y in range(walls.height):
|
||||
( screen_x, screen_y ) = self.to_screen( (x, y) )
|
||||
block = square( (screen_x, screen_y),
|
||||
0.5 * self.gridSize,
|
||||
color = BACKGROUND_COLOR,
|
||||
filled = 1, behind=2)
|
||||
distx.append(block)
|
||||
self.distributionImages = dist
|
||||
|
||||
def drawStaticObjects(self, state):
|
||||
layout = self.layout
|
||||
self.drawWalls(layout.walls)
|
||||
self.food = self.drawFood(layout.food)
|
||||
self.capsules = self.drawCapsules(layout.capsules)
|
||||
refresh()
|
||||
|
||||
def drawAgentObjects(self, state):
|
||||
self.agentImages = [] # (agentState, image)
|
||||
for index, agent in enumerate(state.agentStates):
|
||||
if agent.isPacman:
|
||||
image = self.drawPacman(agent, index)
|
||||
self.agentImages.append( (agent, image) )
|
||||
else:
|
||||
image = self.drawGhost(agent, index)
|
||||
self.agentImages.append( (agent, image) )
|
||||
refresh()
|
||||
|
||||
def swapImages(self, agentIndex, newState):
|
||||
"""
|
||||
Changes an image from a ghost to a pacman or vis versa (for capture)
|
||||
"""
|
||||
prevState, prevImage = self.agentImages[agentIndex]
|
||||
for item in prevImage: remove_from_screen(item)
|
||||
if newState.isPacman:
|
||||
image = self.drawPacman(newState, agentIndex)
|
||||
self.agentImages[agentIndex] = (newState, image )
|
||||
else:
|
||||
image = self.drawGhost(newState, agentIndex)
|
||||
self.agentImages[agentIndex] = (newState, image )
|
||||
refresh()
|
||||
|
||||
def update(self, newState):
|
||||
agentIndex = newState._agentMoved
|
||||
agentState = newState.agentStates[agentIndex]
|
||||
|
||||
if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState)
|
||||
prevState, prevImage = self.agentImages[agentIndex]
|
||||
if agentState.isPacman:
|
||||
self.animatePacman(agentState, prevState, prevImage)
|
||||
else:
|
||||
self.moveGhost(agentState, agentIndex, prevState, prevImage)
|
||||
self.agentImages[agentIndex] = (agentState, prevImage)
|
||||
|
||||
if newState._foodEaten != None:
|
||||
self.removeFood(newState._foodEaten, self.food)
|
||||
if newState._capsuleEaten != None:
|
||||
self.removeCapsule(newState._capsuleEaten, self.capsules)
|
||||
self.infoPane.updateScore(newState.score)
|
||||
if 'ghostDistances' in dir(newState):
|
||||
self.infoPane.updateGhostDistances(newState.ghostDistances)
|
||||
|
||||
def make_window(self, width, height):
|
||||
grid_width = (width-1) * self.gridSize
|
||||
grid_height = (height-1) * self.gridSize
|
||||
screen_width = 2*self.gridSize + grid_width
|
||||
screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT
|
||||
|
||||
begin_graphics(screen_width,
|
||||
screen_height,
|
||||
BACKGROUND_COLOR,
|
||||
"CS188 Pacman")
|
||||
|
||||
def drawPacman(self, pacman, index):
|
||||
position = self.getPosition(pacman)
|
||||
screen_point = self.to_screen(position)
|
||||
endpoints = self.getEndpoints(self.getDirection(pacman))
|
||||
|
||||
width = PACMAN_OUTLINE_WIDTH
|
||||
outlineColor = PACMAN_COLOR
|
||||
fillColor = PACMAN_COLOR
|
||||
|
||||
if self.capture:
|
||||
outlineColor = TEAM_COLORS[index % 2]
|
||||
fillColor = GHOST_COLORS[index]
|
||||
width = PACMAN_CAPTURE_OUTLINE_WIDTH
|
||||
|
||||
return [circle(screen_point, PACMAN_SCALE * self.gridSize,
|
||||
fillColor = fillColor, outlineColor = outlineColor,
|
||||
endpoints = endpoints,
|
||||
width = width)]
|
||||
|
||||
def getEndpoints(self, direction, position=(0,0)):
|
||||
x, y = position
|
||||
pos = x - int(x) + y - int(y)
|
||||
width = 30 + 80 * math.sin(math.pi* pos)
|
||||
|
||||
delta = width / 2
|
||||
if (direction == 'West'):
|
||||
endpoints = (180+delta, 180-delta)
|
||||
elif (direction == 'North'):
|
||||
endpoints = (90+delta, 90-delta)
|
||||
elif (direction == 'South'):
|
||||
endpoints = (270+delta, 270-delta)
|
||||
else:
|
||||
endpoints = (0+delta, 0-delta)
|
||||
return endpoints
|
||||
|
||||
def movePacman(self, position, direction, image):
|
||||
screenPosition = self.to_screen(position)
|
||||
endpoints = self.getEndpoints( direction, position )
|
||||
r = PACMAN_SCALE * self.gridSize
|
||||
moveCircle(image[0], screenPosition, r, endpoints)
|
||||
refresh()
|
||||
|
||||
def animatePacman(self, pacman, prevPacman, image):
|
||||
if self.frameTime < 0:
|
||||
print 'Press any key to step forward, "q" to play'
|
||||
keys = wait_for_keys()
|
||||
if 'q' in keys:
|
||||
self.frameTime = 0.1
|
||||
if self.frameTime > 0.01 or self.frameTime < 0:
|
||||
start = time.time()
|
||||
fx, fy = self.getPosition(prevPacman)
|
||||
px, py = self.getPosition(pacman)
|
||||
frames = 4.0
|
||||
for i in range(1,int(frames) + 1):
|
||||
pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames
|
||||
self.movePacman(pos, self.getDirection(pacman), image)
|
||||
refresh()
|
||||
sleep(abs(self.frameTime) / frames)
|
||||
else:
|
||||
self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image)
|
||||
refresh()
|
||||
|
||||
def getGhostColor(self, ghost, ghostIndex):
|
||||
if ghost.scaredTimer > 0:
|
||||
return SCARED_COLOR
|
||||
else:
|
||||
return GHOST_COLORS[ghostIndex]
|
||||
|
||||
def drawGhost(self, ghost, agentIndex):
|
||||
pos = self.getPosition(ghost)
|
||||
dir = self.getDirection(ghost)
|
||||
(screen_x, screen_y) = (self.to_screen(pos) )
|
||||
coords = []
|
||||
for (x, y) in GHOST_SHAPE:
|
||||
coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y))
|
||||
|
||||
colour = self.getGhostColor(ghost, agentIndex)
|
||||
body = polygon(coords, colour, filled = 1)
|
||||
WHITE = formatColor(1.0, 1.0, 1.0)
|
||||
BLACK = formatColor(0.0, 0.0, 0.0)
|
||||
|
||||
dx = 0
|
||||
dy = 0
|
||||
if dir == 'North':
|
||||
dy = -0.2
|
||||
if dir == 'South':
|
||||
dy = 0.2
|
||||
if dir == 'East':
|
||||
dx = 0.2
|
||||
if dir == 'West':
|
||||
dx = -0.2
|
||||
leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
|
||||
rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
|
||||
leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
|
||||
rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
|
||||
ghostImageParts = []
|
||||
ghostImageParts.append(body)
|
||||
ghostImageParts.append(leftEye)
|
||||
ghostImageParts.append(rightEye)
|
||||
ghostImageParts.append(leftPupil)
|
||||
ghostImageParts.append(rightPupil)
|
||||
|
||||
return ghostImageParts
|
||||
|
||||
def moveEyes(self, pos, dir, eyes):
|
||||
(screen_x, screen_y) = (self.to_screen(pos) )
|
||||
dx = 0
|
||||
dy = 0
|
||||
if dir == 'North':
|
||||
dy = -0.2
|
||||
if dir == 'South':
|
||||
dy = 0.2
|
||||
if dir == 'East':
|
||||
dx = 0.2
|
||||
if dir == 'West':
|
||||
dx = -0.2
|
||||
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
|
||||
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
|
||||
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
|
||||
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
|
||||
|
||||
def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
|
||||
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
|
||||
new_x, new_y = self.to_screen(self.getPosition(ghost))
|
||||
delta = new_x - old_x, new_y - old_y
|
||||
|
||||
for ghostImagePart in ghostImageParts:
|
||||
move_by(ghostImagePart, delta)
|
||||
refresh()
|
||||
|
||||
if ghost.scaredTimer > 0:
|
||||
color = SCARED_COLOR
|
||||
else:
|
||||
color = GHOST_COLORS[ghostIndex]
|
||||
edit(ghostImageParts[0], ('fill', color), ('outline', color))
|
||||
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
|
||||
refresh()
|
||||
|
||||
def getPosition(self, agentState):
|
||||
if agentState.configuration == None: return (-1000, -1000)
|
||||
return agentState.getPosition()
|
||||
|
||||
def getDirection(self, agentState):
|
||||
if agentState.configuration == None: return Directions.STOP
|
||||
return agentState.configuration.getDirection()
|
||||
|
||||
def finish(self):
|
||||
end_graphics()
|
||||
|
||||
def to_screen(self, point):
|
||||
( x, y ) = point
|
||||
#y = self.height - y
|
||||
x = (x + 1)*self.gridSize
|
||||
y = (self.height - y)*self.gridSize
|
||||
return ( x, y )
|
||||
|
||||
# Fixes some TK issue with off-center circles
|
||||
def to_screen2(self, point):
|
||||
( x, y ) = point
|
||||
#y = self.height - y
|
||||
x = (x + 1)*self.gridSize
|
||||
y = (self.height - y)*self.gridSize
|
||||
return ( x, y )
|
||||
|
||||
def drawWalls(self, wallMatrix):
|
||||
wallColor = WALL_COLOR
|
||||
for xNum, x in enumerate(wallMatrix):
|
||||
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0]
|
||||
if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]
|
||||
|
||||
for yNum, cell in enumerate(x):
|
||||
if cell: # There's a wall here
|
||||
pos = (xNum, yNum)
|
||||
screen = self.to_screen(pos)
|
||||
screen2 = self.to_screen2(pos)
|
||||
|
||||
# draw each quadrant of the square based on adjacent walls
|
||||
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
|
||||
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
|
||||
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
|
||||
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
|
||||
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
|
||||
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
|
||||
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
|
||||
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)
|
||||
|
||||
# NE quadrant
|
||||
if (not nIsWall) and (not eIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc')
|
||||
if (nIsWall) and (not eIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
|
||||
if (not nIsWall) and (eIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
if (nIsWall) and (eIsWall) and (not neIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc')
|
||||
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
|
||||
|
||||
# NW quadrant
|
||||
if (not nIsWall) and (not wIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc')
|
||||
if (nIsWall) and (not wIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
|
||||
if (not nIsWall) and (wIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
if (nIsWall) and (wIsWall) and (not nwIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc')
|
||||
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
|
||||
|
||||
# SE quadrant
|
||||
if (not sIsWall) and (not eIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc')
|
||||
if (sIsWall) and (not eIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
|
||||
if (not sIsWall) and (eIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
if (sIsWall) and (eIsWall) and (not seIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc')
|
||||
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
|
||||
|
||||
# SW quadrant
|
||||
if (not sIsWall) and (not wIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc')
|
||||
if (sIsWall) and (not wIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
|
||||
if (not sIsWall) and (wIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
if (sIsWall) and (wIsWall) and (not swIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc')
|
||||
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
|
||||
|
||||
def isWall(self, x, y, walls):
|
||||
if x < 0 or y < 0:
|
||||
return False
|
||||
if x >= walls.width or y >= walls.height:
|
||||
return False
|
||||
return walls[x][y]
|
||||
|
||||
def drawFood(self, foodMatrix ):
|
||||
foodImages = []
|
||||
color = FOOD_COLOR
|
||||
for xNum, x in enumerate(foodMatrix):
|
||||
if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0]
|
||||
if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1]
|
||||
imageRow = []
|
||||
foodImages.append(imageRow)
|
||||
for yNum, cell in enumerate(x):
|
||||
if cell: # There's food here
|
||||
screen = self.to_screen((xNum, yNum ))
|
||||
dot = circle( screen,
|
||||
FOOD_SIZE * self.gridSize,
|
||||
outlineColor = color, fillColor = color,
|
||||
width = 1)
|
||||
imageRow.append(dot)
|
||||
else:
|
||||
imageRow.append(None)
|
||||
return foodImages
|
||||
|
||||
def drawCapsules(self, capsules ):
|
||||
capsuleImages = {}
|
||||
for capsule in capsules:
|
||||
( screen_x, screen_y ) = self.to_screen(capsule)
|
||||
dot = circle( (screen_x, screen_y),
|
||||
CAPSULE_SIZE * self.gridSize,
|
||||
outlineColor = CAPSULE_COLOR,
|
||||
fillColor = CAPSULE_COLOR,
|
||||
width = 1)
|
||||
capsuleImages[capsule] = dot
|
||||
return capsuleImages
|
||||
|
||||
def removeFood(self, cell, foodImages ):
|
||||
x, y = cell
|
||||
remove_from_screen(foodImages[x][y])
|
||||
|
||||
def removeCapsule(self, cell, capsuleImages ):
|
||||
x, y = cell
|
||||
remove_from_screen(capsuleImages[(x, y)])
|
||||
|
||||
def drawExpandedCells(self, cells):
|
||||
"""
|
||||
Draws an overlay of expanded grid positions for search agents
|
||||
"""
|
||||
n = float(len(cells))
|
||||
baseColor = [1.0, 0.0, 0.0]
|
||||
self.clearExpandedCells()
|
||||
self.expandedCells = []
|
||||
for k, cell in enumerate(cells):
|
||||
screenPos = self.to_screen( cell)
|
||||
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
|
||||
block = square(screenPos,
|
||||
0.5 * self.gridSize,
|
||||
color = cellColor,
|
||||
filled = 1, behind=2)
|
||||
self.expandedCells.append(block)
|
||||
if self.frameTime < 0:
|
||||
refresh()
|
||||
|
||||
def clearExpandedCells(self):
|
||||
if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
|
||||
for cell in self.expandedCells:
|
||||
remove_from_screen(cell)
|
||||
|
||||
|
||||
def updateDistributions(self, distributions):
|
||||
"Draws an agent's belief distributions"
|
||||
# copy all distributions so we don't change their state
|
||||
distributions = map(lambda x: x.copy(), distributions)
|
||||
if self.distributionImages == None:
|
||||
self.drawDistributions(self.previousState)
|
||||
for x in range(len(self.distributionImages)):
|
||||
for y in range(len(self.distributionImages[0])):
|
||||
image = self.distributionImages[x][y]
|
||||
weights = [dist[ (x,y) ] for dist in distributions]
|
||||
|
||||
if sum(weights) != 0:
|
||||
pass
|
||||
# Fog of war
|
||||
color = [0.0,0.0,0.0]
|
||||
colors = GHOST_VEC_COLORS[1:] # With Pacman
|
||||
if self.capture: colors = GHOST_VEC_COLORS
|
||||
for weight, gcolor in zip(weights, colors):
|
||||
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
|
||||
changeColor(image, formatColor(*color))
|
||||
refresh()
|
||||
|
||||
class FirstPersonPacmanGraphics(PacmanGraphics):
|
||||
def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0):
|
||||
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
|
||||
self.showGhosts = showGhosts
|
||||
self.capture = capture
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
|
||||
self.isBlue = isBlue
|
||||
PacmanGraphics.startGraphics(self, state)
|
||||
# Initialize distribution images
|
||||
walls = state.layout.walls
|
||||
dist = []
|
||||
self.layout = state.layout
|
||||
|
||||
# Draw the rest
|
||||
self.distributionImages = None # initialize lazily
|
||||
self.drawStaticObjects(state)
|
||||
self.drawAgentObjects(state)
|
||||
|
||||
# Information
|
||||
self.previousState = state
|
||||
|
||||
def lookAhead(self, config, state):
|
||||
if config.getDirection() == 'Stop':
|
||||
return
|
||||
else:
|
||||
pass
|
||||
# Draw relevant ghosts
|
||||
allGhosts = state.getGhostStates()
|
||||
visibleGhosts = state.getVisibleGhosts()
|
||||
for i, ghost in enumerate(allGhosts):
|
||||
if ghost in visibleGhosts:
|
||||
self.drawGhost(ghost, i)
|
||||
else:
|
||||
self.currentGhostImages[i] = None
|
||||
|
||||
def getGhostColor(self, ghost, ghostIndex):
|
||||
return GHOST_COLORS[ghostIndex]
|
||||
|
||||
def getPosition(self, ghostState):
|
||||
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
|
||||
return (-1000, -1000)
|
||||
else:
|
||||
return PacmanGraphics.getPosition(self, ghostState)
|
||||
|
||||
def add(x, y):
|
||||
return (x[0] + y[0], x[1] + y[1])
|
||||
|
||||
|
||||
# Saving graphical output
|
||||
# -----------------------
|
||||
# Note: to make an animated gif from this postscript output, try the command:
|
||||
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
|
||||
# convert is part of imagemagick (freeware)
|
||||
|
||||
SAVE_POSTSCRIPT = False
|
||||
POSTSCRIPT_OUTPUT_DIR = 'frames'
|
||||
FRAME_NUMBER = 0
|
||||
import os
|
||||
|
||||
def saveFrame():
|
||||
"Saves the current graphical output as a postscript file"
|
||||
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
|
||||
if not SAVE_POSTSCRIPT: return
|
||||
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR)
|
||||
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER)
|
||||
FRAME_NUMBER += 1
|
||||
writePostscript(name) # writes the current canvas
|
Binary file not shown.
@ -0,0 +1,402 @@
|
||||
# graphicsUtils.py
|
||||
# ----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import string
|
||||
import time
|
||||
import types
|
||||
import Tkinter
|
||||
import os.path
|
||||
|
||||
_Windows = sys.platform == 'win32' # True if on Win95/98/NT
|
||||
|
||||
_root_window = None # The root window for graphics output
|
||||
_canvas = None # The canvas which holds graphics
|
||||
_canvas_xs = None # Size of canvas object
|
||||
_canvas_ys = None
|
||||
_canvas_x = None # Current position on canvas
|
||||
_canvas_y = None
|
||||
_canvas_col = None # Current colour (set to black below)
|
||||
_canvas_tsize = 12
|
||||
_canvas_tserifs = 0
|
||||
|
||||
def formatColor(r, g, b):
|
||||
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
|
||||
|
||||
def colorToVector(color):
|
||||
return map(lambda x: int(x, 16) / 256.0, [color[1:3], color[3:5], color[5:7]])
|
||||
|
||||
if _Windows:
|
||||
_canvas_tfonts = ['times new roman', 'lucida console']
|
||||
else:
|
||||
_canvas_tfonts = ['times', 'lucidasans-24']
|
||||
pass # XXX need defaults here
|
||||
|
||||
def sleep(secs):
|
||||
global _root_window
|
||||
if _root_window == None:
|
||||
time.sleep(secs)
|
||||
else:
|
||||
_root_window.update_idletasks()
|
||||
_root_window.after(int(1000 * secs), _root_window.quit)
|
||||
_root_window.mainloop()
|
||||
|
||||
def begin_graphics(width=640, height=480, color=formatColor(0, 0, 0), title=None):
|
||||
|
||||
global _root_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _bg_color
|
||||
|
||||
# Check for duplicate call
|
||||
if _root_window is not None:
|
||||
# Lose the window.
|
||||
_root_window.destroy()
|
||||
|
||||
# Save the canvas size parameters
|
||||
_canvas_xs, _canvas_ys = width - 1, height - 1
|
||||
_canvas_x, _canvas_y = 0, _canvas_ys
|
||||
_bg_color = color
|
||||
|
||||
# Create the root window
|
||||
_root_window = Tkinter.Tk()
|
||||
_root_window.protocol('WM_DELETE_WINDOW', _destroy_window)
|
||||
_root_window.title(title or 'Graphics Window')
|
||||
_root_window.resizable(0, 0)
|
||||
|
||||
# Create the canvas object
|
||||
try:
|
||||
_canvas = Tkinter.Canvas(_root_window, width=width, height=height)
|
||||
_canvas.pack()
|
||||
draw_background()
|
||||
_canvas.update()
|
||||
except:
|
||||
_root_window = None
|
||||
raise
|
||||
|
||||
# Bind to key-down and key-up events
|
||||
_root_window.bind( "<KeyPress>", _keypress )
|
||||
_root_window.bind( "<KeyRelease>", _keyrelease )
|
||||
_root_window.bind( "<FocusIn>", _clear_keys )
|
||||
_root_window.bind( "<FocusOut>", _clear_keys )
|
||||
_root_window.bind( "<Button-1>", _leftclick )
|
||||
_root_window.bind( "<Button-2>", _rightclick )
|
||||
_root_window.bind( "<Button-3>", _rightclick )
|
||||
_root_window.bind( "<Control-Button-1>", _ctrl_leftclick)
|
||||
_clear_keys()
|
||||
|
||||
_leftclick_loc = None
|
||||
_rightclick_loc = None
|
||||
_ctrl_leftclick_loc = None
|
||||
|
||||
def _leftclick(event):
|
||||
global _leftclick_loc
|
||||
_leftclick_loc = (event.x, event.y)
|
||||
|
||||
def _rightclick(event):
|
||||
global _rightclick_loc
|
||||
_rightclick_loc = (event.x, event.y)
|
||||
|
||||
def _ctrl_leftclick(event):
|
||||
global _ctrl_leftclick_loc
|
||||
_ctrl_leftclick_loc = (event.x, event.y)
|
||||
|
||||
def wait_for_click():
|
||||
while True:
|
||||
global _leftclick_loc
|
||||
global _rightclick_loc
|
||||
global _ctrl_leftclick_loc
|
||||
if _leftclick_loc != None:
|
||||
val = _leftclick_loc
|
||||
_leftclick_loc = None
|
||||
return val, 'left'
|
||||
if _rightclick_loc != None:
|
||||
val = _rightclick_loc
|
||||
_rightclick_loc = None
|
||||
return val, 'right'
|
||||
if _ctrl_leftclick_loc != None:
|
||||
val = _ctrl_leftclick_loc
|
||||
_ctrl_leftclick_loc = None
|
||||
return val, 'ctrl_left'
|
||||
sleep(0.05)
|
||||
|
||||
def draw_background():
|
||||
corners = [(0,0), (0, _canvas_ys), (_canvas_xs, _canvas_ys), (_canvas_xs, 0)]
|
||||
polygon(corners, _bg_color, fillColor=_bg_color, filled=True, smoothed=False)
|
||||
|
||||
def _destroy_window(event=None):
|
||||
sys.exit(0)
|
||||
# global _root_window
|
||||
# _root_window.destroy()
|
||||
# _root_window = None
|
||||
#print "DESTROY"
|
||||
|
||||
def end_graphics():
|
||||
global _root_window, _canvas, _mouse_enabled
|
||||
try:
|
||||
try:
|
||||
sleep(1)
|
||||
if _root_window != None:
|
||||
_root_window.destroy()
|
||||
except SystemExit, e:
|
||||
print 'Ending graphics raised an exception:', e
|
||||
finally:
|
||||
_root_window = None
|
||||
_canvas = None
|
||||
_mouse_enabled = 0
|
||||
_clear_keys()
|
||||
|
||||
def clear_screen(background=None):
|
||||
global _canvas_x, _canvas_y
|
||||
_canvas.delete('all')
|
||||
draw_background()
|
||||
_canvas_x, _canvas_y = 0, _canvas_ys
|
||||
|
||||
def polygon(coords, outlineColor, fillColor=None, filled=1, smoothed=1, behind=0, width=1):
|
||||
c = []
|
||||
for coord in coords:
|
||||
c.append(coord[0])
|
||||
c.append(coord[1])
|
||||
if fillColor == None: fillColor = outlineColor
|
||||
if filled == 0: fillColor = ""
|
||||
poly = _canvas.create_polygon(c, outline=outlineColor, fill=fillColor, smooth=smoothed, width=width)
|
||||
if behind > 0:
|
||||
_canvas.tag_lower(poly, behind) # Higher should be more visible
|
||||
return poly
|
||||
|
||||
def square(pos, r, color, filled=1, behind=0):
|
||||
x, y = pos
|
||||
coords = [(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)]
|
||||
return polygon(coords, color, color, filled, 0, behind=behind)
|
||||
|
||||
def circle(pos, r, outlineColor, fillColor, endpoints=None, style='pieslice', width=2):
|
||||
x, y = pos
|
||||
x0, x1 = x - r - 1, x + r
|
||||
y0, y1 = y - r - 1, y + r
|
||||
if endpoints == None:
|
||||
e = [0, 359]
|
||||
else:
|
||||
e = list(endpoints)
|
||||
while e[0] > e[1]: e[1] = e[1] + 360
|
||||
|
||||
return _canvas.create_arc(x0, y0, x1, y1, outline=outlineColor, fill=fillColor,
|
||||
extent=e[1] - e[0], start=e[0], style=style, width=width)
|
||||
|
||||
def image(pos, file="../../blueghost.gif"):
|
||||
x, y = pos
|
||||
# img = PhotoImage(file=file)
|
||||
return _canvas.create_image(x, y, image = Tkinter.PhotoImage(file=file), anchor = Tkinter.NW)
|
||||
|
||||
|
||||
def refresh():
|
||||
_canvas.update_idletasks()
|
||||
|
||||
def moveCircle(id, pos, r, endpoints=None):
|
||||
global _canvas_x, _canvas_y
|
||||
|
||||
x, y = pos
|
||||
# x0, x1 = x - r, x + r + 1
|
||||
# y0, y1 = y - r, y + r + 1
|
||||
x0, x1 = x - r - 1, x + r
|
||||
y0, y1 = y - r - 1, y + r
|
||||
if endpoints == None:
|
||||
e = [0, 359]
|
||||
else:
|
||||
e = list(endpoints)
|
||||
while e[0] > e[1]: e[1] = e[1] + 360
|
||||
|
||||
if os.path.isfile('flag'):
|
||||
edit(id, ('extent', e[1] - e[0]))
|
||||
else:
|
||||
edit(id, ('start', e[0]), ('extent', e[1] - e[0]))
|
||||
move_to(id, x0, y0)
|
||||
|
||||
def edit(id, *args):
|
||||
_canvas.itemconfigure(id, **dict(args))
|
||||
|
||||
def text(pos, color, contents, font='Helvetica', size=12, style='normal', anchor="nw"):
|
||||
global _canvas_x, _canvas_y
|
||||
x, y = pos
|
||||
font = (font, str(size), style)
|
||||
return _canvas.create_text(x, y, fill=color, text=contents, font=font, anchor=anchor)
|
||||
|
||||
def changeText(id, newText, font=None, size=12, style='normal'):
|
||||
_canvas.itemconfigure(id, text=newText)
|
||||
if font != None:
|
||||
_canvas.itemconfigure(id, font=(font, '-%d' % size, style))
|
||||
|
||||
def changeColor(id, newColor):
|
||||
_canvas.itemconfigure(id, fill=newColor)
|
||||
|
||||
def line(here, there, color=formatColor(0, 0, 0), width=2):
|
||||
x0, y0 = here[0], here[1]
|
||||
x1, y1 = there[0], there[1]
|
||||
return _canvas.create_line(x0, y0, x1, y1, fill=color, width=width)
|
||||
|
||||
##############################################################################
|
||||
### Keypress handling ########################################################
|
||||
##############################################################################
|
||||
|
||||
# We bind to key-down and key-up events.
|
||||
|
||||
_keysdown = {}
|
||||
_keyswaiting = {}
|
||||
# This holds an unprocessed key release. We delay key releases by up to
|
||||
# one call to keys_pressed() to get round a problem with auto repeat.
|
||||
_got_release = None
|
||||
|
||||
def _keypress(event):
|
||||
global _got_release
|
||||
#remap_arrows(event)
|
||||
_keysdown[event.keysym] = 1
|
||||
_keyswaiting[event.keysym] = 1
|
||||
# print event.char, event.keycode
|
||||
_got_release = None
|
||||
|
||||
def _keyrelease(event):
|
||||
global _got_release
|
||||
#remap_arrows(event)
|
||||
try:
|
||||
del _keysdown[event.keysym]
|
||||
except:
|
||||
pass
|
||||
_got_release = 1
|
||||
|
||||
def remap_arrows(event):
|
||||
# TURN ARROW PRESSES INTO LETTERS (SHOULD BE IN KEYBOARD AGENT)
|
||||
if event.char in ['a', 's', 'd', 'w']:
|
||||
return
|
||||
if event.keycode in [37, 101]: # LEFT ARROW (win / x)
|
||||
event.char = 'a'
|
||||
if event.keycode in [38, 99]: # UP ARROW
|
||||
event.char = 'w'
|
||||
if event.keycode in [39, 102]: # RIGHT ARROW
|
||||
event.char = 'd'
|
||||
if event.keycode in [40, 104]: # DOWN ARROW
|
||||
event.char = 's'
|
||||
|
||||
def _clear_keys(event=None):
|
||||
global _keysdown, _got_release, _keyswaiting
|
||||
_keysdown = {}
|
||||
_keyswaiting = {}
|
||||
_got_release = None
|
||||
|
||||
def keys_pressed(d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT):
|
||||
d_o_e(d_w)
|
||||
if _got_release:
|
||||
d_o_e(d_w)
|
||||
return _keysdown.keys()
|
||||
|
||||
def keys_waiting():
|
||||
global _keyswaiting
|
||||
keys = _keyswaiting.keys()
|
||||
_keyswaiting = {}
|
||||
return keys
|
||||
|
||||
# Block for a list of keys...
|
||||
|
||||
def wait_for_keys():
|
||||
keys = []
|
||||
while keys == []:
|
||||
keys = keys_pressed()
|
||||
sleep(0.05)
|
||||
return keys
|
||||
|
||||
def remove_from_screen(x,
|
||||
d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT):
|
||||
_canvas.delete(x)
|
||||
d_o_e(d_w)
|
||||
|
||||
def _adjust_coords(coord_list, x, y):
|
||||
for i in range(0, len(coord_list), 2):
|
||||
coord_list[i] = coord_list[i] + x
|
||||
coord_list[i + 1] = coord_list[i + 1] + y
|
||||
return coord_list
|
||||
|
||||
def move_to(object, x, y=None,
|
||||
d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT):
|
||||
if y is None:
|
||||
try: x, y = x
|
||||
except: raise 'incomprehensible coordinates'
|
||||
|
||||
horiz = True
|
||||
newCoords = []
|
||||
current_x, current_y = _canvas.coords(object)[0:2] # first point
|
||||
for coord in _canvas.coords(object):
|
||||
if horiz:
|
||||
inc = x - current_x
|
||||
else:
|
||||
inc = y - current_y
|
||||
horiz = not horiz
|
||||
|
||||
newCoords.append(coord + inc)
|
||||
|
||||
_canvas.coords(object, *newCoords)
|
||||
d_o_e(d_w)
|
||||
|
||||
def move_by(object, x, y=None,
|
||||
d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT, lift=False):
|
||||
if y is None:
|
||||
try: x, y = x
|
||||
except: raise Exception, 'incomprehensible coordinates'
|
||||
|
||||
horiz = True
|
||||
newCoords = []
|
||||
for coord in _canvas.coords(object):
|
||||
if horiz:
|
||||
inc = x
|
||||
else:
|
||||
inc = y
|
||||
horiz = not horiz
|
||||
|
||||
newCoords.append(coord + inc)
|
||||
|
||||
_canvas.coords(object, *newCoords)
|
||||
d_o_e(d_w)
|
||||
if lift:
|
||||
_canvas.tag_raise(object)
|
||||
|
||||
def writePostscript(filename):
|
||||
"Writes the current canvas to a postscript file."
|
||||
psfile = file(filename, 'w')
|
||||
psfile.write(_canvas.postscript(pageanchor='sw',
|
||||
y='0.c',
|
||||
x='0.c'))
|
||||
psfile.close()
|
||||
|
||||
ghost_shape = [
|
||||
(0, - 0.5),
|
||||
(0.25, - 0.75),
|
||||
(0.5, - 0.5),
|
||||
(0.75, - 0.75),
|
||||
(0.75, 0.5),
|
||||
(0.5, 0.75),
|
||||
(- 0.5, 0.75),
|
||||
(- 0.75, 0.5),
|
||||
(- 0.75, - 0.75),
|
||||
(- 0.5, - 0.5),
|
||||
(- 0.25, - 0.75)
|
||||
]
|
||||
|
||||
if __name__ == '__main__':
|
||||
begin_graphics()
|
||||
clear_screen()
|
||||
ghost_shape = [(x * 10 + 20, y * 10 + 20) for x, y in ghost_shape]
|
||||
g = polygon(ghost_shape, formatColor(1, 1, 1))
|
||||
move_to(g, (50, 50))
|
||||
circle((150, 150), 20, formatColor(0.7, 0.3, 0.0), endpoints=[15, - 15])
|
||||
sleep(2)
|
Binary file not shown.
@ -0,0 +1,84 @@
|
||||
# keyboardAgents.py
|
||||
# -----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from game import Agent
|
||||
from game import Directions
|
||||
import random
|
||||
|
||||
class KeyboardAgent(Agent):
|
||||
"""
|
||||
An agent controlled by the keyboard.
|
||||
"""
|
||||
# NOTE: Arrow keys also work.
|
||||
WEST_KEY = 'a'
|
||||
EAST_KEY = 'd'
|
||||
NORTH_KEY = 'w'
|
||||
SOUTH_KEY = 's'
|
||||
STOP_KEY = 'q'
|
||||
|
||||
def __init__( self, index = 0 ):
|
||||
|
||||
self.lastMove = Directions.STOP
|
||||
self.index = index
|
||||
self.keys = []
|
||||
|
||||
def getAction( self, state):
|
||||
from graphicsUtils import keys_waiting
|
||||
from graphicsUtils import keys_pressed
|
||||
keys = keys_waiting() + keys_pressed()
|
||||
if keys != []:
|
||||
self.keys = keys
|
||||
|
||||
legal = state.getLegalActions(self.index)
|
||||
move = self.getMove(legal)
|
||||
|
||||
if move == Directions.STOP:
|
||||
# Try to move in the same direction as before
|
||||
if self.lastMove in legal:
|
||||
move = self.lastMove
|
||||
|
||||
if (self.STOP_KEY in self.keys) and Directions.STOP in legal: move = Directions.STOP
|
||||
|
||||
if move not in legal:
|
||||
move = random.choice(legal)
|
||||
|
||||
self.lastMove = move
|
||||
return move
|
||||
|
||||
def getMove(self, legal):
|
||||
move = Directions.STOP
|
||||
if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal: move = Directions.WEST
|
||||
if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal: move = Directions.EAST
|
||||
if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
|
||||
if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
|
||||
return move
|
||||
|
||||
class KeyboardAgent2(KeyboardAgent):
|
||||
"""
|
||||
A second agent controlled by the keyboard.
|
||||
"""
|
||||
# NOTE: Arrow keys also work.
|
||||
WEST_KEY = 'j'
|
||||
EAST_KEY = "l"
|
||||
NORTH_KEY = 'i'
|
||||
SOUTH_KEY = 'k'
|
||||
STOP_KEY = 'u'
|
||||
|
||||
def getMove(self, legal):
|
||||
move = Directions.STOP
|
||||
if (self.WEST_KEY in self.keys) and Directions.WEST in legal: move = Directions.WEST
|
||||
if (self.EAST_KEY in self.keys) and Directions.EAST in legal: move = Directions.EAST
|
||||
if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
|
||||
if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
|
||||
return move
|
Binary file not shown.
@ -0,0 +1,149 @@
|
||||
# layout.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from util import manhattanDistance
|
||||
from game import Grid
|
||||
import os
|
||||
import random
|
||||
|
||||
VISIBILITY_MATRIX_CACHE = {}
|
||||
|
||||
class Layout:
|
||||
"""
|
||||
A Layout manages the static information about the game board.
|
||||
"""
|
||||
|
||||
def __init__(self, layoutText):
|
||||
self.width = len(layoutText[0])
|
||||
self.height= len(layoutText)
|
||||
self.walls = Grid(self.width, self.height, False)
|
||||
self.food = Grid(self.width, self.height, False)
|
||||
self.capsules = []
|
||||
self.agentPositions = []
|
||||
self.numGhosts = 0
|
||||
self.processLayoutText(layoutText)
|
||||
self.layoutText = layoutText
|
||||
self.totalFood = len(self.food.asList())
|
||||
# self.initializeVisibilityMatrix()
|
||||
|
||||
def getNumGhosts(self):
|
||||
return self.numGhosts
|
||||
|
||||
def initializeVisibilityMatrix(self):
|
||||
global VISIBILITY_MATRIX_CACHE
|
||||
if reduce(str.__add__, self.layoutText) not in VISIBILITY_MATRIX_CACHE:
|
||||
from game import Directions
|
||||
vecs = [(-0.5,0), (0.5,0),(0,-0.5),(0,0.5)]
|
||||
dirs = [Directions.NORTH, Directions.SOUTH, Directions.WEST, Directions.EAST]
|
||||
vis = Grid(self.width, self.height, {Directions.NORTH:set(), Directions.SOUTH:set(), Directions.EAST:set(), Directions.WEST:set(), Directions.STOP:set()})
|
||||
for x in range(self.width):
|
||||
for y in range(self.height):
|
||||
if self.walls[x][y] == False:
|
||||
for vec, direction in zip(vecs, dirs):
|
||||
dx, dy = vec
|
||||
nextx, nexty = x + dx, y + dy
|
||||
while (nextx + nexty) != int(nextx) + int(nexty) or not self.walls[int(nextx)][int(nexty)] :
|
||||
vis[x][y][direction].add((nextx, nexty))
|
||||
nextx, nexty = x + dx, y + dy
|
||||
self.visibility = vis
|
||||
VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] = vis
|
||||
else:
|
||||
self.visibility = VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)]
|
||||
|
||||
def isWall(self, pos):
|
||||
x, col = pos
|
||||
return self.walls[x][col]
|
||||
|
||||
def getRandomLegalPosition(self):
|
||||
x = random.choice(range(self.width))
|
||||
y = random.choice(range(self.height))
|
||||
while self.isWall( (x, y) ):
|
||||
x = random.choice(range(self.width))
|
||||
y = random.choice(range(self.height))
|
||||
return (x,y)
|
||||
|
||||
def getRandomCorner(self):
|
||||
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
|
||||
return random.choice(poses)
|
||||
|
||||
def getFurthestCorner(self, pacPos):
|
||||
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
|
||||
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
|
||||
return pos
|
||||
|
||||
def isVisibleFrom(self, ghostPos, pacPos, pacDirection):
|
||||
row, col = [int(x) for x in pacPos]
|
||||
return ghostPos in self.visibility[row][col][pacDirection]
|
||||
|
||||
def __str__(self):
|
||||
return "\n".join(self.layoutText)
|
||||
|
||||
def deepCopy(self):
|
||||
return Layout(self.layoutText[:])
|
||||
|
||||
def processLayoutText(self, layoutText):
|
||||
"""
|
||||
Coordinates are flipped from the input format to the (x,y) convention here
|
||||
|
||||
The shape of the maze. Each character
|
||||
represents a different type of object.
|
||||
% - Wall
|
||||
. - Food
|
||||
o - Capsule
|
||||
G - Ghost
|
||||
P - Pacman
|
||||
Other characters are ignored.
|
||||
"""
|
||||
maxY = self.height - 1
|
||||
for y in range(self.height):
|
||||
for x in range(self.width):
|
||||
layoutChar = layoutText[maxY - y][x]
|
||||
self.processLayoutChar(x, y, layoutChar)
|
||||
self.agentPositions.sort()
|
||||
self.agentPositions = [ ( i == 0, pos) for i, pos in self.agentPositions]
|
||||
|
||||
def processLayoutChar(self, x, y, layoutChar):
|
||||
if layoutChar == '%':
|
||||
self.walls[x][y] = True
|
||||
elif layoutChar == '.':
|
||||
self.food[x][y] = True
|
||||
elif layoutChar == 'o':
|
||||
self.capsules.append((x, y))
|
||||
elif layoutChar == 'P':
|
||||
self.agentPositions.append( (0, (x, y) ) )
|
||||
elif layoutChar in ['G']:
|
||||
self.agentPositions.append( (1, (x, y) ) )
|
||||
self.numGhosts += 1
|
||||
elif layoutChar in ['1', '2', '3', '4']:
|
||||
self.agentPositions.append( (int(layoutChar), (x,y)))
|
||||
self.numGhosts += 1
|
||||
def getLayout(name, back = 2):
|
||||
if name.endswith('.lay'):
|
||||
layout = tryToLoad('layouts/' + name)
|
||||
if layout == None: layout = tryToLoad(name)
|
||||
else:
|
||||
layout = tryToLoad('layouts/' + name + '.lay')
|
||||
if layout == None: layout = tryToLoad(name + '.lay')
|
||||
if layout == None and back >= 0:
|
||||
curdir = os.path.abspath('.')
|
||||
os.chdir('..')
|
||||
layout = getLayout(name, back -1)
|
||||
os.chdir(curdir)
|
||||
return layout
|
||||
|
||||
def tryToLoad(fullname):
|
||||
if(not os.path.exists(fullname)): return None
|
||||
f = open(fullname)
|
||||
try: return Layout([line.strip() for line in f])
|
||||
finally: f.close()
|
Binary file not shown.
@ -0,0 +1,37 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%. % %.%
|
||||
% %%%%% % %%% %%% %%%%%%% % %
|
||||
% % % % % % % %
|
||||
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
|
||||
% % % % % % % % % % % % %
|
||||
% %%% % % % %%% %%%%% %%% % %%% %%% %
|
||||
% % % % % % % % %
|
||||
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
|
||||
% % % % % % %
|
||||
% % %%%%% % %%% % % %%% % %%% %%% % %
|
||||
% % % % % % % % % % % % % %
|
||||
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
|
||||
% % % % % % % % % %
|
||||
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
|
||||
% % % % % % % % %
|
||||
% % % % % % %%% %%% %%% % % % % % %
|
||||
% % % % % %% % % % % % % % % %
|
||||
% % %%%%% % %%% %%% % %%% %%% %%%%%
|
||||
% % % % % % % % % % %
|
||||
% %%% % % % %%% %%% %%%%%%%%% % %%%
|
||||
% % % % % % %
|
||||
% %%% %%%%%%%%%%%%%%%%%%%%% % % %%% %
|
||||
% % % %
|
||||
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
|
||||
% % % % % % % % % % % %
|
||||
% % %%% %%% % % % %%%%%%%%% %%% % % %
|
||||
% % % % % % %P % % % % % %
|
||||
% %%% %%% %%% % %%% % % %%%%% % %%%%%
|
||||
% % % % % % % %
|
||||
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
|
||||
% % % % % % % % % % % % % % %
|
||||
% % %%% % % % % %%%%%%%%% % % % % % %
|
||||
% % % %
|
||||
% % % %%% %%% %%%%%%% %%% %%% %%% %
|
||||
%.% % % % % .%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,37 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% % % % % % % %
|
||||
% %%%%%%% % %%% % %%% %%% %%%%%%% % %
|
||||
% % % % % % % %
|
||||
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
|
||||
% % % % % % % % % % % % % %
|
||||
% %%% % % % %%% %%%%% %%% % %%% %%% %
|
||||
% % % % % % % % %
|
||||
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
|
||||
% % % % % % %
|
||||
% % %%%%% % %%% % % %%% % %%% %%% % %
|
||||
% % % % % % % % % % % % % %
|
||||
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
|
||||
% % % % % % % % % %
|
||||
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
|
||||
% % % % % % % % % % % %
|
||||
% % % % % %%% %%% %%% %%% % % % % % %
|
||||
% % % % % % % % %
|
||||
%%% %%%%%%% % % %%%%% %%% % %%% %%%%%
|
||||
% % % % % % % % % %
|
||||
%%%%% % % %%%%%%%%% %%%%%%%%%%% % %%%
|
||||
% % % % % % % % %
|
||||
% %%% %%%%% %%%%%%%%% %%%%% % % %%% %
|
||||
% % % % % % %
|
||||
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
|
||||
% % % % % % % % % % % %
|
||||
% % %%% %%% % % % %%%%%%%%% %%% % % %
|
||||
% % % % % % % % % % % % %
|
||||
% %%% %%% %%%%% %%% % % %%%%% % %%%%%
|
||||
% % % % % % % % %
|
||||
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
|
||||
% % % % % % % % % % % % % % %
|
||||
% % %%% % % % % %%%%%%%%% % % % % % %
|
||||
% % % % % %
|
||||
% % % % %%% %%% %%%%%%% %%% %%% %%% %
|
||||
%.% % % % % % % % P%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.%.........%% G % o%%%%.....%
|
||||
%.%.%%%%%%%.%%%%%% %%%%%%%.%%.%
|
||||
%............%...%............%
|
||||
%%%%%...%%%.. ..%.%...%.%%%
|
||||
%o%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
|
||||
% ..........Po...%...%. o%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,15 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.....%.................%.....%
|
||||
%.%%%.%.%%%.%%%%%%%.%%%.%.....%
|
||||
%.%...%.%......%......%.%.....%
|
||||
%...%%%.%.%%%%.%.%%%%...%%%...%
|
||||
%%%.%.%.%.%......%..%.%...%.%%%
|
||||
%...%.%%%.%.%%% %%%.%.%%%.%...%
|
||||
%.%%%.......% %.......%%%.%
|
||||
%...%.%%%%%.%%%%%%%.%.%%%.%...%
|
||||
%%%.%...%.%....%....%.%...%.%%%
|
||||
%...%%%.%.%%%%.%.%%%%.%.%%%...%
|
||||
%.......%......%......%.....%.%
|
||||
%.....%.%%%.%%%%%%%.%%%.%.%%%.%
|
||||
%.....%........P....%...%.....%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,14 @@
|
||||
%%%%%%%%%%%%%%
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%. . . . . %G%
|
||||
% % %
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%. . . . . % %
|
||||
% P %G%
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%
|
||||
%G. G ....%
|
||||
%.% % %%%%%% %.%%.%
|
||||
%.%o% % o% %.o%.%
|
||||
%.%%%.% %%% %..%.%
|
||||
%..... P %..%G%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,9 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%...o%
|
||||
%.%%.%.%%..%%.%.%%.%
|
||||
%...... G GG%......%
|
||||
%.%.%%.%% %%%.%%.%.%
|
||||
%.%....% ooo%.%..%.%
|
||||
%.%.%%.% %% %.%.%%.%
|
||||
%o%......P....%....%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,11 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% P %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%. %
|
||||
%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%
|
||||
%....%
|
||||
% %%.%
|
||||
% %%.%
|
||||
%.P .%
|
||||
%.%%%%
|
||||
%....%
|
||||
%%%%%%
|
@ -0,0 +1,11 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%....%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%.%..............%.%
|
||||
%.%.%%.%% %%.%%.%.%
|
||||
%......%G G%......%
|
||||
%.%.%%.%%%%%%.%%.%.%
|
||||
%.%..............%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%....%...P....%...o%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,14 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%. % % % %.%
|
||||
% % % %%%%%% %%%%%%% % %
|
||||
% % % % % %
|
||||
%%%%% %%%%% %%% %% %%%%% % %%%
|
||||
% % % % % % % % %
|
||||
% %%% % % % %%%%%%%% %%% %%% %
|
||||
% % %% % % % %
|
||||
%%% % %%%%%%% %%%% %%% % % % %
|
||||
% % %% % % %
|
||||
% % %%%%% % %%%% % %%% %%% % %
|
||||
% % % % % % %%% %
|
||||
%. %P%%%%% % %%% % .%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,18 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
|
||||
% %% % % %%% %%% %% ... %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % % %% %% %% ... %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% ... %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% ... %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % ... %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% ...... %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,18 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
|
||||
% %% % % %%%%%%% %% %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % %% %% %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,6 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.% ....%% G %%%%%% o%%.%
|
||||
%.%o%%%%%%%.%%%%%%% %%%%%.%
|
||||
% %%%.%%%%%.%%%%%%%.%%%.%.%%%.%
|
||||
% ..........Po...%.........%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,18 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
|
||||
% %% % % %%% %%% %%GG %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % % %%GG %% %
|
||||
% %% % % % % % %%%%% %%% %%%%%% %
|
||||
% %% % % % % %% %%%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%% %% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % % %% %% %
|
||||
% %%%%%% %% %% %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%% %%%%% %%%%%% %
|
||||
%%%%%%%% % %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%............%%%%%............%
|
||||
%%%.%...%%%.........%.%...%.%%%
|
||||
%...%%%.%.%%%%.%.%%%%%%.%%%...%
|
||||
%.%.....%......%......%.....%.%
|
||||
%.%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
|
||||
%.....%........P....%...%.....%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%%%%%
|
||||
%.P G%
|
||||
% %.%G%%%
|
||||
%G %%%
|
||||
%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%...%.........%%...%
|
||||
%.%.%.%%%%%%%%%%.%.%
|
||||
%..................%
|
||||
%%%%%%%%.%.%%%%%%%P%
|
||||
%%%%%%%%....... %
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,9 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.. P .... .... %
|
||||
%.. ... ... ... ... %
|
||||
%.. ... ... ... ... %
|
||||
%.. .... .... G %
|
||||
%.. ... ... ... ... %
|
||||
%.. ... ... ... ... %
|
||||
%.. .... .... o%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,23 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%. %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%..................%
|
||||
%..................%
|
||||
%........P.........%
|
||||
%..................%
|
||||
%..................%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,27 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%............%%............%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%o%%%%.%%%%%.%%.%%%%%.%%%%o%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%..........................%
|
||||
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
|
||||
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
|
||||
%......%%....%%....%%......%
|
||||
%%%%%%.%%%%% %% %%%%%.%%%%%%
|
||||
%%%%%%.%%%%% %% %%%%%.%%%%%%
|
||||
%%%%%%.% %.%%%%%%
|
||||
%%%%%%.% %%%% %%%% %.%%%%%%
|
||||
% . %G GG G% . %
|
||||
%%%%%%.% %%%%%%%%%% %.%%%%%%
|
||||
%%%%%%.% %.%%%%%%
|
||||
%%%%%%.% %%%%%%%%%% %.%%%%%%
|
||||
%............%%............%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%o..%%....... .......%%..o%
|
||||
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
|
||||
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
|
||||
%......%%....%%....%%......%
|
||||
%.%%%%%%%%%%.%%.%%%%%%%%%%.%
|
||||
%.............P............%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o....o%GGGG%o....o%
|
||||
%..%...%% %%...%..%
|
||||
%.%o.%........%.o%.%
|
||||
%.o%.%.%%%%%%.%.%o.%
|
||||
%........P.........%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%......%G G%......%
|
||||
%.%%...%% %%...%%.%
|
||||
%.%o.%........%.o%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%........P.........%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,10 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %% % % %
|
||||
% %%%%%% % %%%%%% %
|
||||
%%%%%% P % %
|
||||
% % %%%%%% %% %%%%%
|
||||
% %%%% % % %
|
||||
% %%% %%% % %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,15 @@
|
||||
%%%%%%%%%
|
||||
%.. % G %
|
||||
%%% %%%%%
|
||||
% %
|
||||
%%%%%%% %
|
||||
% %
|
||||
% %%%%% %
|
||||
% % %
|
||||
%%%%% % %
|
||||
% %o%
|
||||
% %%%%%%%
|
||||
% .%
|
||||
%%%%%%%.%
|
||||
%Po .%
|
||||
%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%. ...P .%
|
||||
%.%%.%%.%%.%%.%% %.%
|
||||
% %% %..... %.%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,10 @@
|
||||
%%%%%
|
||||
% . %
|
||||
%.G.%
|
||||
% . %
|
||||
%. .%
|
||||
% %
|
||||
% .%
|
||||
% %
|
||||
%P .%
|
||||
%%%%%
|
@ -0,0 +1,3 @@
|
||||
%%%%%%%%%%
|
||||
%. P%
|
||||
%%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%
|
||||
%.P %
|
||||
%%% %
|
||||
%. %
|
||||
%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%%%
|
||||
%. .%
|
||||
% P %
|
||||
% %%%% %
|
||||
% % %
|
||||
% % %%%%
|
||||
%.% .%
|
||||
%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%
|
||||
% P%
|
||||
% %%% %
|
||||
% % %
|
||||
%% %%
|
||||
%. %%%%
|
||||
%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%
|
||||
% G %...%
|
||||
%%%%%%% %
|
||||
%Po %
|
||||
%.%%.%%.%
|
||||
%.%%....%
|
||||
%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%
|
||||
%.. ..%
|
||||
%%%%.%% %
|
||||
% P %
|
||||
%.%% %%.%
|
||||
%.%. .%
|
||||
%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%%%%
|
||||
% P G%
|
||||
%G%%%%%%
|
||||
%.... %
|
||||
%%%%%%%%
|
@ -0,0 +1,13 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%...o%
|
||||
%.%%.%.%%..%%.%.%%.%
|
||||
%.%.....%..%.....%.%
|
||||
%.%.%%.%% %%.%%.%.%
|
||||
%...... GGGG%.%....%
|
||||
%.%....%%%%%%.%..%.%
|
||||
%.%....% oo%.%..%.%
|
||||
%.%....% %%%%.%..%.%
|
||||
%.%...........%..%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%o...%...P....%...o%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%. ..% %
|
||||
%.%%.%%.%%.%%.%% % %
|
||||
% P % %
|
||||
%%%%%%%%%%%%%%%%%% %
|
||||
%..... %
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,684 @@
|
||||
# pacman.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
Pacman.py holds the logic for the classic pacman game along with the main
|
||||
code to run a game. This file is divided into three sections:
|
||||
|
||||
(i) Your interface to the pacman world:
|
||||
Pacman is a complex environment. You probably don't want to
|
||||
read through all of the code we wrote to make the game runs
|
||||
correctly. This section contains the parts of the code
|
||||
that you will need to understand in order to complete the
|
||||
project. There is also some code in game.py that you should
|
||||
understand.
|
||||
|
||||
(ii) The hidden secrets of pacman:
|
||||
This section contains all of the logic code that the pacman
|
||||
environment uses to decide who can move where, who dies when
|
||||
things collide, etc. You shouldn't need to read this section
|
||||
of code, but you can if you want.
|
||||
|
||||
(iii) Framework to start a game:
|
||||
The final section contains the code for reading the command
|
||||
you use to set up the game, then starting up a new game, along with
|
||||
linking in all the external parts (agent functions, graphics).
|
||||
Check this section out to see all the options available to you.
|
||||
|
||||
To play your first game, type 'python pacman.py' from the command line.
|
||||
The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun!
|
||||
"""
|
||||
from game import GameStateData
|
||||
from game import Game
|
||||
from game import Directions
|
||||
from game import Actions
|
||||
from util import nearestPoint
|
||||
from util import manhattanDistance
|
||||
import util, layout
|
||||
import sys, types, time, random, os
|
||||
|
||||
###################################################
|
||||
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
|
||||
###################################################
|
||||
|
||||
class GameState:
|
||||
"""
|
||||
A GameState specifies the full game state, including the food, capsules,
|
||||
agent configurations and score changes.
|
||||
|
||||
GameStates are used by the Game object to capture the actual state of the game and
|
||||
can be used by agents to reason about the game.
|
||||
|
||||
Much of the information in a GameState is stored in a GameStateData object. We
|
||||
strongly suggest that you access that data via the accessor methods below rather
|
||||
than referring to the GameStateData object directly.
|
||||
|
||||
Note that in classic Pacman, Pacman is always agent 0.
|
||||
"""
|
||||
|
||||
####################################################
|
||||
# Accessor methods: use these to access state data #
|
||||
####################################################
|
||||
|
||||
# static variable keeps track of which states have had getLegalActions called
|
||||
explored = set()
|
||||
def getAndResetExplored():
|
||||
tmp = GameState.explored.copy()
|
||||
GameState.explored = set()
|
||||
return tmp
|
||||
getAndResetExplored = staticmethod(getAndResetExplored)
|
||||
|
||||
def getLegalActions( self, agentIndex=0 ):
|
||||
"""
|
||||
Returns the legal actions for the agent specified.
|
||||
"""
|
||||
# GameState.explored.add(self)
|
||||
if self.isWin() or self.isLose(): return []
|
||||
|
||||
if agentIndex == 0: # Pacman is moving
|
||||
return PacmanRules.getLegalActions( self )
|
||||
else:
|
||||
return GhostRules.getLegalActions( self, agentIndex )
|
||||
|
||||
def generateSuccessor( self, agentIndex, action):
|
||||
"""
|
||||
Returns the successor state after the specified agent takes the action.
|
||||
"""
|
||||
# Check that successors exist
|
||||
if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.')
|
||||
|
||||
# Copy current state
|
||||
state = GameState(self)
|
||||
|
||||
# Let agent's logic deal with its action's effects on the board
|
||||
if agentIndex == 0: # Pacman is moving
|
||||
state.data._eaten = [False for i in range(state.getNumAgents())]
|
||||
PacmanRules.applyAction( state, action )
|
||||
else: # A ghost is moving
|
||||
GhostRules.applyAction( state, action, agentIndex )
|
||||
|
||||
# Time passes
|
||||
if agentIndex == 0:
|
||||
state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around
|
||||
else:
|
||||
GhostRules.decrementTimer( state.data.agentStates[agentIndex] )
|
||||
|
||||
# Resolve multi-agent effects
|
||||
GhostRules.checkDeath( state, agentIndex )
|
||||
|
||||
# Book keeping
|
||||
state.data._agentMoved = agentIndex
|
||||
state.data.score += state.data.scoreChange
|
||||
GameState.explored.add(self)
|
||||
GameState.explored.add(state)
|
||||
return state
|
||||
|
||||
def getLegalPacmanActions( self ):
|
||||
return self.getLegalActions( 0 )
|
||||
|
||||
def generatePacmanSuccessor( self, action ):
|
||||
"""
|
||||
Generates the successor state after the specified pacman move
|
||||
"""
|
||||
return self.generateSuccessor( 0, action )
|
||||
|
||||
def getPacmanState( self ):
|
||||
"""
|
||||
Returns an AgentState object for pacman (in game.py)
|
||||
|
||||
state.pos gives the current position
|
||||
state.direction gives the travel vector
|
||||
"""
|
||||
return self.data.agentStates[0].copy()
|
||||
|
||||
def getPacmanPosition( self ):
|
||||
return self.data.agentStates[0].getPosition()
|
||||
|
||||
def getGhostStates( self ):
|
||||
return self.data.agentStates[1:]
|
||||
|
||||
def getGhostState( self, agentIndex ):
|
||||
if agentIndex == 0 or agentIndex >= self.getNumAgents():
|
||||
raise Exception("Invalid index passed to getGhostState")
|
||||
return self.data.agentStates[agentIndex]
|
||||
|
||||
def getGhostPosition( self, agentIndex ):
|
||||
if agentIndex == 0:
|
||||
raise Exception("Pacman's index passed to getGhostPosition")
|
||||
return self.data.agentStates[agentIndex].getPosition()
|
||||
|
||||
def getGhostPositions(self):
|
||||
return [s.getPosition() for s in self.getGhostStates()]
|
||||
|
||||
def getNumAgents( self ):
|
||||
return len( self.data.agentStates )
|
||||
|
||||
def getScore( self ):
|
||||
return float(self.data.score)
|
||||
|
||||
def getCapsules(self):
|
||||
"""
|
||||
Returns a list of positions (x,y) of the remaining capsules.
|
||||
"""
|
||||
return self.data.capsules
|
||||
|
||||
def getNumFood( self ):
|
||||
return self.data.food.count()
|
||||
|
||||
def getFood(self):
|
||||
"""
|
||||
Returns a Grid of boolean food indicator variables.
|
||||
|
||||
Grids can be accessed via list notation, so to check
|
||||
if there is food at (x,y), just call
|
||||
|
||||
currentFood = state.getFood()
|
||||
if currentFood[x][y] == True: ...
|
||||
"""
|
||||
return self.data.food
|
||||
|
||||
def getWalls(self):
|
||||
"""
|
||||
Returns a Grid of boolean wall indicator variables.
|
||||
|
||||
Grids can be accessed via list notation, so to check
|
||||
if there is a wall at (x,y), just call
|
||||
|
||||
walls = state.getWalls()
|
||||
if walls[x][y] == True: ...
|
||||
"""
|
||||
return self.data.layout.walls
|
||||
|
||||
def hasFood(self, x, y):
|
||||
return self.data.food[x][y]
|
||||
|
||||
def hasWall(self, x, y):
|
||||
return self.data.layout.walls[x][y]
|
||||
|
||||
def isLose( self ):
|
||||
return self.data._lose
|
||||
|
||||
def isWin( self ):
|
||||
return self.data._win
|
||||
|
||||
#############################################
|
||||
# Helper methods: #
|
||||
# You shouldn't need to call these directly #
|
||||
#############################################
|
||||
|
||||
def __init__( self, prevState = None ):
|
||||
"""
|
||||
Generates a new state by copying information from its predecessor.
|
||||
"""
|
||||
if prevState != None: # Initial state
|
||||
self.data = GameStateData(prevState.data)
|
||||
else:
|
||||
self.data = GameStateData()
|
||||
|
||||
def deepCopy( self ):
|
||||
state = GameState( self )
|
||||
state.data = self.data.deepCopy()
|
||||
return state
|
||||
|
||||
def __eq__( self, other ):
|
||||
"""
|
||||
Allows two states to be compared.
|
||||
"""
|
||||
return hasattr(other, 'data') and self.data == other.data
|
||||
|
||||
def __hash__( self ):
|
||||
"""
|
||||
Allows states to be keys of dictionaries.
|
||||
"""
|
||||
return hash( self.data )
|
||||
|
||||
def __str__( self ):
|
||||
|
||||
return str(self.data)
|
||||
|
||||
def initialize( self, layout, numGhostAgents=1000 ):
|
||||
"""
|
||||
Creates an initial game state from a layout array (see layout.py).
|
||||
"""
|
||||
self.data.initialize(layout, numGhostAgents)
|
||||
|
||||
############################################################################
|
||||
# THE HIDDEN SECRETS OF PACMAN #
|
||||
# #
|
||||
# You shouldn't need to look through the code in this section of the file. #
|
||||
############################################################################
|
||||
|
||||
SCARED_TIME = 40 # Moves ghosts are scared
|
||||
COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill
|
||||
TIME_PENALTY = 1 # Number of points lost each round
|
||||
|
||||
class ClassicGameRules:
|
||||
"""
|
||||
These game rules manage the control flow of a game, deciding when
|
||||
and how the game starts and ends.
|
||||
"""
|
||||
def __init__(self, timeout=30):
|
||||
self.timeout = timeout
|
||||
|
||||
def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False):
|
||||
agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()]
|
||||
initState = GameState()
|
||||
initState.initialize( layout, len(ghostAgents) )
|
||||
game = Game(agents, display, self, catchExceptions=catchExceptions)
|
||||
game.state = initState
|
||||
self.initialState = initState.deepCopy()
|
||||
self.quiet = quiet
|
||||
return game
|
||||
|
||||
def process(self, state, game):
|
||||
"""
|
||||
Checks to see whether it is time to end the game.
|
||||
"""
|
||||
if state.isWin(): self.win(state, game)
|
||||
if state.isLose(): self.lose(state, game)
|
||||
|
||||
def win( self, state, game ):
|
||||
if not self.quiet: print "Pacman emerges victorious! Score: %d" % state.data.score
|
||||
game.gameOver = True
|
||||
|
||||
def lose( self, state, game ):
|
||||
if not self.quiet: print "Pacman died! Score: %d" % state.data.score
|
||||
game.gameOver = True
|
||||
|
||||
def getProgress(self, game):
|
||||
return float(game.state.getNumFood()) / self.initialState.getNumFood()
|
||||
|
||||
def agentCrash(self, game, agentIndex):
|
||||
if agentIndex == 0:
|
||||
print "Pacman crashed"
|
||||
else:
|
||||
print "A ghost crashed"
|
||||
|
||||
def getMaxTotalTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMaxStartupTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMoveWarningTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMoveTimeout(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMaxTimeWarnings(self, agentIndex):
|
||||
return 0
|
||||
|
||||
class PacmanRules:
|
||||
"""
|
||||
These functions govern how pacman interacts with his environment under
|
||||
the classic game rules.
|
||||
"""
|
||||
PACMAN_SPEED=1
|
||||
|
||||
def getLegalActions( state ):
|
||||
"""
|
||||
Returns a list of possible actions.
|
||||
"""
|
||||
return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls )
|
||||
getLegalActions = staticmethod( getLegalActions )
|
||||
|
||||
def applyAction( state, action ):
|
||||
"""
|
||||
Edits the state to reflect the results of the action.
|
||||
"""
|
||||
legal = PacmanRules.getLegalActions( state )
|
||||
if action not in legal:
|
||||
raise Exception("Illegal action " + str(action))
|
||||
|
||||
pacmanState = state.data.agentStates[0]
|
||||
|
||||
# Update Configuration
|
||||
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
|
||||
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
|
||||
|
||||
# Eat
|
||||
next = pacmanState.configuration.getPosition()
|
||||
nearest = nearestPoint( next )
|
||||
if manhattanDistance( nearest, next ) <= 0.5 :
|
||||
# Remove food
|
||||
PacmanRules.consume( nearest, state )
|
||||
applyAction = staticmethod( applyAction )
|
||||
|
||||
def consume( position, state ):
|
||||
x,y = position
|
||||
# Eat food
|
||||
if state.data.food[x][y]:
|
||||
state.data.scoreChange += 10
|
||||
state.data.food = state.data.food.copy()
|
||||
state.data.food[x][y] = False
|
||||
state.data._foodEaten = position
|
||||
# TODO: cache numFood?
|
||||
numFood = state.getNumFood()
|
||||
if numFood == 0 and not state.data._lose:
|
||||
state.data.scoreChange += 500
|
||||
state.data._win = True
|
||||
# Eat capsule
|
||||
if( position in state.getCapsules() ):
|
||||
state.data.capsules.remove( position )
|
||||
state.data._capsuleEaten = position
|
||||
# Reset all ghosts' scared timers
|
||||
for index in range( 1, len( state.data.agentStates ) ):
|
||||
state.data.agentStates[index].scaredTimer = SCARED_TIME
|
||||
consume = staticmethod( consume )
|
||||
|
||||
class GhostRules:
|
||||
"""
|
||||
These functions dictate how ghosts interact with their environment.
|
||||
"""
|
||||
GHOST_SPEED=1.0
|
||||
def getLegalActions( state, ghostIndex ):
|
||||
"""
|
||||
Ghosts cannot stop, and cannot turn around unless they
|
||||
reach a dead end, but can turn 90 degrees at intersections.
|
||||
"""
|
||||
conf = state.getGhostState( ghostIndex ).configuration
|
||||
possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls )
|
||||
reverse = Actions.reverseDirection( conf.direction )
|
||||
if Directions.STOP in possibleActions:
|
||||
possibleActions.remove( Directions.STOP )
|
||||
if reverse in possibleActions and len( possibleActions ) > 1:
|
||||
possibleActions.remove( reverse )
|
||||
return possibleActions
|
||||
getLegalActions = staticmethod( getLegalActions )
|
||||
|
||||
def applyAction( state, action, ghostIndex):
|
||||
|
||||
legal = GhostRules.getLegalActions( state, ghostIndex )
|
||||
if action not in legal:
|
||||
raise Exception("Illegal ghost action " + str(action))
|
||||
|
||||
ghostState = state.data.agentStates[ghostIndex]
|
||||
speed = GhostRules.GHOST_SPEED
|
||||
if ghostState.scaredTimer > 0: speed /= 2.0
|
||||
vector = Actions.directionToVector( action, speed )
|
||||
ghostState.configuration = ghostState.configuration.generateSuccessor( vector )
|
||||
applyAction = staticmethod( applyAction )
|
||||
|
||||
def decrementTimer( ghostState):
|
||||
timer = ghostState.scaredTimer
|
||||
if timer == 1:
|
||||
ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos )
|
||||
ghostState.scaredTimer = max( 0, timer - 1 )
|
||||
decrementTimer = staticmethod( decrementTimer )
|
||||
|
||||
def checkDeath( state, agentIndex):
|
||||
pacmanPosition = state.getPacmanPosition()
|
||||
if agentIndex == 0: # Pacman just moved; Anyone can kill him
|
||||
for index in range( 1, len( state.data.agentStates ) ):
|
||||
ghostState = state.data.agentStates[index]
|
||||
ghostPosition = ghostState.configuration.getPosition()
|
||||
if GhostRules.canKill( pacmanPosition, ghostPosition ):
|
||||
GhostRules.collide( state, ghostState, index )
|
||||
else:
|
||||
ghostState = state.data.agentStates[agentIndex]
|
||||
ghostPosition = ghostState.configuration.getPosition()
|
||||
if GhostRules.canKill( pacmanPosition, ghostPosition ):
|
||||
GhostRules.collide( state, ghostState, agentIndex )
|
||||
checkDeath = staticmethod( checkDeath )
|
||||
|
||||
def collide( state, ghostState, agentIndex):
|
||||
if ghostState.scaredTimer > 0:
|
||||
state.data.scoreChange += 200
|
||||
GhostRules.placeGhost(state, ghostState)
|
||||
ghostState.scaredTimer = 0
|
||||
# Added for first-person
|
||||
state.data._eaten[agentIndex] = True
|
||||
else:
|
||||
if not state.data._win:
|
||||
state.data.scoreChange -= 500
|
||||
state.data._lose = True
|
||||
collide = staticmethod( collide )
|
||||
|
||||
def canKill( pacmanPosition, ghostPosition ):
|
||||
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
|
||||
canKill = staticmethod( canKill )
|
||||
|
||||
def placeGhost(state, ghostState):
|
||||
ghostState.configuration = ghostState.start
|
||||
placeGhost = staticmethod( placeGhost )
|
||||
|
||||
#############################
|
||||
# FRAMEWORK TO START A GAME #
|
||||
#############################
|
||||
|
||||
def default(str):
|
||||
return str + ' [Default: %default]'
|
||||
|
||||
def parseAgentArgs(str):
|
||||
if str == None: return {}
|
||||
pieces = str.split(',')
|
||||
opts = {}
|
||||
for p in pieces:
|
||||
if '=' in p:
|
||||
key, val = p.split('=')
|
||||
else:
|
||||
key,val = p, 1
|
||||
opts[key] = val
|
||||
return opts
|
||||
|
||||
def readCommand( argv ):
|
||||
"""
|
||||
Processes the command used to run pacman from the command line.
|
||||
"""
|
||||
from optparse import OptionParser
|
||||
usageStr = """
|
||||
USAGE: python pacman.py <options>
|
||||
EXAMPLES: (1) python pacman.py
|
||||
- starts an interactive game
|
||||
(2) python pacman.py --layout smallClassic --zoom 2
|
||||
OR python pacman.py -l smallClassic -z 2
|
||||
- starts an interactive game on a smaller board, zoomed in
|
||||
"""
|
||||
parser = OptionParser(usageStr)
|
||||
|
||||
parser.add_option('-n', '--numGames', dest='numGames', type='int',
|
||||
help=default('the number of GAMES to play'), metavar='GAMES', default=1)
|
||||
parser.add_option('-l', '--layout', dest='layout',
|
||||
help=default('the LAYOUT_FILE from which to load the map layout'),
|
||||
metavar='LAYOUT_FILE', default='mediumClassic')
|
||||
parser.add_option('-p', '--pacman', dest='pacman',
|
||||
help=default('the agent TYPE in the pacmanAgents module to use'),
|
||||
metavar='TYPE', default='KeyboardAgent')
|
||||
parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics',
|
||||
help='Display output as text only', default=False)
|
||||
parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics',
|
||||
help='Generate minimal output and no graphics', default=False)
|
||||
parser.add_option('-g', '--ghosts', dest='ghost',
|
||||
help=default('the ghost agent TYPE in the ghostAgents module to use'),
|
||||
metavar = 'TYPE', default='RandomGhost')
|
||||
parser.add_option('-k', '--numghosts', type='int', dest='numGhosts',
|
||||
help=default('The maximum number of ghosts to use'), default=4)
|
||||
parser.add_option('-z', '--zoom', type='float', dest='zoom',
|
||||
help=default('Zoom the size of the graphics window'), default=1.0)
|
||||
parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed',
|
||||
help='Fixes the random seed to always play the same game', default=False)
|
||||
parser.add_option('-r', '--recordActions', action='store_true', dest='record',
|
||||
help='Writes game histories to a file (named by the time they were played)', default=False)
|
||||
parser.add_option('--replay', dest='gameToReplay',
|
||||
help='A recorded game file (pickle) to replay', default=None)
|
||||
parser.add_option('-a','--agentArgs',dest='agentArgs',
|
||||
help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"')
|
||||
parser.add_option('-x', '--numTraining', dest='numTraining', type='int',
|
||||
help=default('How many episodes are training (suppresses output)'), default=0)
|
||||
parser.add_option('--frameTime', dest='frameTime', type='float',
|
||||
help=default('Time to delay between frames; <0 means keyboard'), default=0.1)
|
||||
parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions',
|
||||
help='Turns on exception handling and timeouts during games', default=False)
|
||||
parser.add_option('--timeout', dest='timeout', type='int',
|
||||
help=default('Maximum length of time an agent can spend computing in a single game'), default=30)
|
||||
|
||||
options, otherjunk = parser.parse_args(argv)
|
||||
if len(otherjunk) != 0:
|
||||
raise Exception('Command line input not understood: ' + str(otherjunk))
|
||||
args = dict()
|
||||
|
||||
# Fix the random seed
|
||||
if options.fixRandomSeed: random.seed('cs188')
|
||||
|
||||
# Choose a layout
|
||||
args['layout'] = layout.getLayout( options.layout )
|
||||
if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found")
|
||||
|
||||
# Choose a Pacman agent
|
||||
noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics)
|
||||
pacmanType = loadAgent(options.pacman, noKeyboard)
|
||||
agentOpts = parseAgentArgs(options.agentArgs)
|
||||
if options.numTraining > 0:
|
||||
args['numTraining'] = options.numTraining
|
||||
if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining
|
||||
pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs
|
||||
args['pacman'] = pacman
|
||||
|
||||
# Don't display training games
|
||||
if 'numTrain' in agentOpts:
|
||||
options.numQuiet = int(agentOpts['numTrain'])
|
||||
options.numIgnore = int(agentOpts['numTrain'])
|
||||
|
||||
# Choose a ghost agent
|
||||
ghostType = loadAgent(options.ghost, noKeyboard)
|
||||
args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
|
||||
|
||||
# Choose a display format
|
||||
if options.quietGraphics:
|
||||
import textDisplay
|
||||
args['display'] = textDisplay.NullGraphics()
|
||||
elif options.textGraphics:
|
||||
import textDisplay
|
||||
textDisplay.SLEEP_TIME = options.frameTime
|
||||
args['display'] = textDisplay.PacmanGraphics()
|
||||
else:
|
||||
import graphicsDisplay
|
||||
args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime)
|
||||
args['numGames'] = options.numGames
|
||||
args['record'] = options.record
|
||||
args['catchExceptions'] = options.catchExceptions
|
||||
args['timeout'] = options.timeout
|
||||
|
||||
# Special case: recorded games don't use the runGames method or args structure
|
||||
if options.gameToReplay != None:
|
||||
print 'Replaying recorded game %s.' % options.gameToReplay
|
||||
import cPickle
|
||||
f = open(options.gameToReplay)
|
||||
try: recorded = cPickle.load(f)
|
||||
finally: f.close()
|
||||
recorded['display'] = args['display']
|
||||
replayGame(**recorded)
|
||||
sys.exit(0)
|
||||
|
||||
return args
|
||||
|
||||
def loadAgent(pacman, nographics):
|
||||
# Looks through all pythonPath Directories for the right module,
|
||||
pythonPathStr = os.path.expandvars("$PYTHONPATH")
|
||||
if pythonPathStr.find(';') == -1:
|
||||
pythonPathDirs = pythonPathStr.split(':')
|
||||
else:
|
||||
pythonPathDirs = pythonPathStr.split(';')
|
||||
pythonPathDirs.append('.')
|
||||
|
||||
for moduleDir in pythonPathDirs:
|
||||
if not os.path.isdir(moduleDir): continue
|
||||
moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')]
|
||||
for modulename in moduleNames:
|
||||
try:
|
||||
module = __import__(modulename[:-3])
|
||||
except ImportError:
|
||||
continue
|
||||
if pacman in dir(module):
|
||||
if nographics and modulename == 'keyboardAgents.py':
|
||||
raise Exception('Using the keyboard requires graphics (not text display)')
|
||||
return getattr(module, pacman)
|
||||
raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.')
|
||||
|
||||
def replayGame( layout, actions, display ):
|
||||
import pacmanAgents, ghostAgents
|
||||
rules = ClassicGameRules()
|
||||
agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())]
|
||||
game = rules.newGame( layout, agents[0], agents[1:], display )
|
||||
state = game.state
|
||||
display.initialize(state.data)
|
||||
|
||||
for action in actions:
|
||||
# Execute the action
|
||||
state = state.generateSuccessor( *action )
|
||||
# Change the display
|
||||
display.update( state.data )
|
||||
# Allow for game specific conditions (winning, losing, etc.)
|
||||
rules.process(state, game)
|
||||
|
||||
display.finish()
|
||||
|
||||
def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30 ):
|
||||
import __main__
|
||||
__main__.__dict__['_display'] = display
|
||||
|
||||
rules = ClassicGameRules(timeout)
|
||||
games = []
|
||||
|
||||
for i in range( numGames ):
|
||||
beQuiet = i < numTraining
|
||||
if beQuiet:
|
||||
# Suppress output and graphics
|
||||
import textDisplay
|
||||
gameDisplay = textDisplay.NullGraphics()
|
||||
rules.quiet = True
|
||||
else:
|
||||
gameDisplay = display
|
||||
rules.quiet = False
|
||||
game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions)
|
||||
game.run()
|
||||
if not beQuiet: games.append(game)
|
||||
|
||||
if record:
|
||||
import time, cPickle
|
||||
fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]])
|
||||
f = file(fname, 'w')
|
||||
components = {'layout': layout, 'actions': game.moveHistory}
|
||||
cPickle.dump(components, f)
|
||||
f.close()
|
||||
|
||||
if (numGames-numTraining) > 0:
|
||||
scores = [game.state.getScore() for game in games]
|
||||
wins = [game.state.isWin() for game in games]
|
||||
winRate = wins.count(True)/ float(len(wins))
|
||||
print 'Average Score:', sum(scores) / float(len(scores))
|
||||
print 'Scores: ', ', '.join([str(score) for score in scores])
|
||||
print 'Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate)
|
||||
print 'Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins])
|
||||
|
||||
return games
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
The main function called when pacman.py is run
|
||||
from the command line:
|
||||
|
||||
> python pacman.py
|
||||
|
||||
See the usage string for more details.
|
||||
|
||||
> python pacman.py --help
|
||||
"""
|
||||
args = readCommand( sys.argv[1:] ) # Get game components based on input
|
||||
runGames( **args )
|
||||
|
||||
# import cProfile
|
||||
# cProfile.run("runGames( **args )")
|
||||
pass
|
Binary file not shown.
@ -0,0 +1,52 @@
|
||||
# pacmanAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from pacman import Directions
|
||||
from game import Agent
|
||||
import random
|
||||
import game
|
||||
import util
|
||||
|
||||
class LeftTurnAgent(game.Agent):
|
||||
"An agent that turns left at every opportunity"
|
||||
|
||||
def getAction(self, state):
|
||||
legal = state.getLegalPacmanActions()
|
||||
current = state.getPacmanState().configuration.direction
|
||||
if current == Directions.STOP: current = Directions.NORTH
|
||||
left = Directions.LEFT[current]
|
||||
if left in legal: return left
|
||||
if current in legal: return current
|
||||
if Directions.RIGHT[current] in legal: return Directions.RIGHT[current]
|
||||
if Directions.LEFT[left] in legal: return Directions.LEFT[left]
|
||||
return Directions.STOP
|
||||
|
||||
class GreedyAgent(Agent):
|
||||
def __init__(self, evalFn="scoreEvaluation"):
|
||||
self.evaluationFunction = util.lookup(evalFn, globals())
|
||||
assert self.evaluationFunction != None
|
||||
|
||||
def getAction(self, state):
|
||||
# Generate candidate actions
|
||||
legal = state.getLegalPacmanActions()
|
||||
if Directions.STOP in legal: legal.remove(Directions.STOP)
|
||||
|
||||
successors = [(state.generateSuccessor(0, action), action) for action in legal]
|
||||
scored = [(self.evaluationFunction(state), action) for state, action in successors]
|
||||
bestScore = max(scored)[0]
|
||||
bestActions = [pair[1] for pair in scored if pair[0] == bestScore]
|
||||
return random.choice(bestActions)
|
||||
|
||||
def scoreEvaluation(state):
|
||||
return state.getScore()
|
Binary file not shown.
@ -0,0 +1,18 @@
|
||||
# projectParams.py
|
||||
# ----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
STUDENT_CODE_DEFAULT = 'searchAgents.py,search.py'
|
||||
PROJECT_TEST_CLASSES = 'searchTestClasses.py'
|
||||
PROJECT_NAME = 'Project 1: Search'
|
||||
BONUS_PIC = False
|
@ -0,0 +1,191 @@
|
||||
# search.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
In search.py, you will implement generic search algorithms which are called by
|
||||
Pacman agents (in searchAgents.py).
|
||||
"""
|
||||
|
||||
import util
|
||||
|
||||
class SearchProblem:
|
||||
"""
|
||||
This class outlines the structure of a search problem, but doesn't implement
|
||||
any of the methods (in object-oriented terminology: an abstract class).
|
||||
|
||||
You do not need to change anything in this class, ever.
|
||||
"""
|
||||
|
||||
def getStartState(self):
|
||||
"""
|
||||
Returns the start state for the search problem.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
state: Search state
|
||||
|
||||
Returns True if and only if the state is a valid goal state.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
state: Search state
|
||||
|
||||
For a given state, this should return a list of triples, (successor,
|
||||
action, stepCost), where 'successor' is a successor to the current
|
||||
state, 'action' is the action required to get there, and 'stepCost' is
|
||||
the incremental cost of expanding to that successor.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
actions: A list of actions to take
|
||||
|
||||
This method returns the total cost of a particular sequence of actions.
|
||||
The sequence must be composed of legal moves.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
|
||||
def tinyMazeSearch(problem):
|
||||
"""
|
||||
Returns a sequence of moves that solves tinyMaze. For any other maze, the
|
||||
sequence of moves will be incorrect, so only use this for tinyMaze.
|
||||
"""
|
||||
from game import Directions
|
||||
s = Directions.SOUTH
|
||||
w = Directions.WEST
|
||||
return [s, s, w, s, w, w, s, w]
|
||||
|
||||
def depthFirstSearch(problem):
|
||||
"""
|
||||
Search the deepest nodes in the search tree first.
|
||||
|
||||
Your search algorithm needs to return a list of actions that reaches the
|
||||
goal. Make sure to implement a graph search algorithm.
|
||||
|
||||
To get started, you might want to try some of these simple commands to
|
||||
understand the search problem that is being passed in:
|
||||
|
||||
print "Start:", problem.getStartState()
|
||||
print "Is the start a goal?", problem.isGoalState(problem.getStartState())
|
||||
print "Start's successors:", problem.getSuccessors(problem.getStartState())
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
# start state
|
||||
startState = problem.getStartState()
|
||||
# have exit
|
||||
exitState = []
|
||||
#use stack to dfs
|
||||
States = util.Stack()
|
||||
States.push((startState,[]))
|
||||
#repeat a circle to confirm if it is successful
|
||||
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
||||
State,Actions = States.pop()
|
||||
if State not in exitState:
|
||||
exitState.append(State)
|
||||
Successor = problem.getSuccessors(State)
|
||||
for Node in Successor:
|
||||
Coordinates = Node[0]
|
||||
Direction = Node[1]
|
||||
if not Coordinates in exitState:
|
||||
States.push((Coordinates,Actions + [Direction]))
|
||||
startState = Coordinates
|
||||
return Actions + [Direction]
|
||||
util.raiseNotDefined()
|
||||
|
||||
def breadthFirstSearch(problem):
|
||||
"""Search the shallowest nodes in the search tree first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
startState = problem.getStartState()
|
||||
exitState = []
|
||||
States = util.Queue()
|
||||
States.push((startState,[]))
|
||||
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
||||
State, Actions = States.pop()
|
||||
if State not in exitState:
|
||||
Successor = problem.getSuccessors(State)
|
||||
exitState.append(State)
|
||||
for Node in Successor:
|
||||
Coordinates = Node[0]
|
||||
Direction = Node[1]
|
||||
if Coordinates not in exitState:
|
||||
States.push((Coordinates,Actions+[Direction]))
|
||||
startState = Coordinates
|
||||
return Actions + [Direction]
|
||||
util.raiseNotDefined()
|
||||
|
||||
def uniformCostSearch(problem):
|
||||
"""Search the node of least total cost first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
startState = problem.getStartState()
|
||||
exitState = []
|
||||
States = util.PriorityQueue()
|
||||
States.push((startState, []),0)
|
||||
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
||||
State, Actions = States.pop()
|
||||
if State not in exitState:
|
||||
Successor = problem.getSuccessors(State)
|
||||
exitState.append(State)
|
||||
for Node in Successor:
|
||||
Coordinates = Node[0]
|
||||
Direction = Node[1]
|
||||
if Coordinates not in exitState:
|
||||
newAction = Actions + [Direction]
|
||||
States.push((Coordinates, newAction),problem.getCostOfActions(newAction))
|
||||
startState = Coordinates
|
||||
return Actions + [Direction]
|
||||
util.raiseNotDefined()
|
||||
|
||||
def nullHeuristic(state, problem=None):
|
||||
"""
|
||||
A heuristic function estimates the cost from the current state to the nearest
|
||||
goal in the provided SearchProblem. This heuristic is trivial.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def aStarSearch(problem, heuristic=nullHeuristic):
|
||||
"""Search the node that has the lowest combined cost and heuristic first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
startState = problem.getStartState()
|
||||
exitState = []
|
||||
States = util.PriorityQueue()
|
||||
h_n = heuristic(startState,problem)
|
||||
States.push((startState, []), h_n)
|
||||
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
||||
State, Actions = States.pop()
|
||||
if State not in exitState:
|
||||
Successor = problem.getSuccessors(State)
|
||||
exitState.append(State)
|
||||
for Node in Successor:
|
||||
Coordinates = Node[0]
|
||||
Direction = Node[1]
|
||||
if Coordinates not in exitState:
|
||||
newAction = Actions + [Direction]
|
||||
newCost = problem.getCostOfActions(newAction) + heuristic(Coordinates,problem)
|
||||
States.push((Coordinates, newAction), newCost)
|
||||
startState = Coordinates
|
||||
return Actions + [Direction]
|
||||
util.raiseNotDefined()
|
||||
|
||||
|
||||
# Abbreviations
|
||||
bfs = breadthFirstSearch
|
||||
dfs = depthFirstSearch
|
||||
astar = aStarSearch
|
||||
ucs = uniformCostSearch
|
Binary file not shown.
@ -0,0 +1,654 @@
|
||||
# searchAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
This file contains all of the agents that can be selected to control Pacman. To
|
||||
select an agent, use the '-p' option when running pacman.py. Arguments can be
|
||||
passed to your agent using '-a'. For example, to load a SearchAgent that uses
|
||||
depth first search (dfs), run the following command:
|
||||
|
||||
> python pacman.py -p SearchAgent -a fn=depthFirstSearch
|
||||
|
||||
Commands to invoke other search strategies can be found in the project
|
||||
description.
|
||||
|
||||
Please only change the parts of the file you are asked to. Look for the lines
|
||||
that say
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
|
||||
The parts you fill in start about 3/4 of the way down. Follow the project
|
||||
description for details.
|
||||
|
||||
Good luck and happy searching!
|
||||
"""
|
||||
|
||||
from game import Directions
|
||||
from game import Agent
|
||||
from game import Actions
|
||||
import util
|
||||
import time
|
||||
import search
|
||||
|
||||
class GoWestAgent(Agent):
|
||||
"An agent that goes West until it can't."
|
||||
|
||||
def getAction(self, state):
|
||||
"The agent receives a GameState (defined in pacman.py)."
|
||||
if Directions.WEST in state.getLegalPacmanActions():
|
||||
return Directions.WEST
|
||||
else:
|
||||
return Directions.STOP
|
||||
|
||||
#######################################################
|
||||
# This portion is written for you, but will only work #
|
||||
# after you fill in parts of search.py #
|
||||
#######################################################
|
||||
|
||||
class SearchAgent(Agent):
|
||||
"""
|
||||
This very general search agent finds a path using a supplied search
|
||||
algorithm for a supplied search problem, then returns actions to follow that
|
||||
path.
|
||||
|
||||
As a default, this agent runs DFS on a PositionSearchProblem to find
|
||||
location (1,1)
|
||||
|
||||
Options for fn include:
|
||||
depthFirstSearch or dfs
|
||||
breadthFirstSearch or bfs
|
||||
|
||||
|
||||
Note: You should NOT change any code in SearchAgent
|
||||
"""
|
||||
|
||||
def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'):
|
||||
# Warning: some advanced Python magic is employed below to find the right functions and problems
|
||||
|
||||
# Get the search function from the name and heuristic
|
||||
if fn not in dir(search):
|
||||
raise AttributeError, fn + ' is not a search function in search.py.'
|
||||
func = getattr(search, fn)
|
||||
if 'heuristic' not in func.func_code.co_varnames:
|
||||
print('[SearchAgent] using function ' + fn)
|
||||
self.searchFunction = func
|
||||
else:
|
||||
if heuristic in globals().keys():
|
||||
heur = globals()[heuristic]
|
||||
elif heuristic in dir(search):
|
||||
heur = getattr(search, heuristic)
|
||||
else:
|
||||
raise AttributeError, heuristic + ' is not a function in searchAgents.py or search.py.'
|
||||
print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic))
|
||||
# Note: this bit of Python trickery combines the search algorithm and the heuristic
|
||||
self.searchFunction = lambda x: func(x, heuristic=heur)
|
||||
|
||||
# Get the search problem type from the name
|
||||
if prob not in globals().keys() or not prob.endswith('Problem'):
|
||||
raise AttributeError, prob + ' is not a search problem type in SearchAgents.py.'
|
||||
self.searchType = globals()[prob]
|
||||
print('[SearchAgent] using problem type ' + prob)
|
||||
|
||||
def registerInitialState(self, state):
|
||||
"""
|
||||
This is the first time that the agent sees the layout of the game
|
||||
board. Here, we choose a path to the goal. In this phase, the agent
|
||||
should compute the path to the goal and store it in a local variable.
|
||||
All of the work is done in this method!
|
||||
|
||||
state: a GameState object (pacman.py)
|
||||
"""
|
||||
if self.searchFunction == None: raise Exception, "No search function provided for SearchAgent"
|
||||
starttime = time.time()
|
||||
problem = self.searchType(state) # Makes a new search problem
|
||||
self.actions = self.searchFunction(problem) # Find a path
|
||||
totalCost = problem.getCostOfActions(self.actions)
|
||||
print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime))
|
||||
if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded)
|
||||
|
||||
def getAction(self, state):
|
||||
"""
|
||||
Returns the next action in the path chosen earlier (in
|
||||
registerInitialState). Return Directions.STOP if there is no further
|
||||
action to take.
|
||||
|
||||
state: a GameState object (pacman.py)
|
||||
"""
|
||||
if 'actionIndex' not in dir(self): self.actionIndex = 0
|
||||
i = self.actionIndex
|
||||
self.actionIndex += 1
|
||||
if i < len(self.actions):
|
||||
return self.actions[i]
|
||||
else:
|
||||
return Directions.STOP
|
||||
|
||||
class PositionSearchProblem(search.SearchProblem):
|
||||
"""
|
||||
A search problem defines the state space, start state, goal test, successor
|
||||
function and cost function. This search problem can be used to find paths
|
||||
to a particular point on the pacman board.
|
||||
|
||||
The state space consists of (x,y) positions in a pacman game.
|
||||
|
||||
Note: this search problem is fully specified; you should NOT change it.
|
||||
"""
|
||||
|
||||
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
|
||||
"""
|
||||
Stores the start and goal.
|
||||
|
||||
gameState: A GameState object (pacman.py)
|
||||
costFn: A function from a search state (tuple) to a non-negative number
|
||||
goal: A position in the gameState
|
||||
"""
|
||||
self.walls = gameState.getWalls()
|
||||
self.startState = gameState.getPacmanPosition()
|
||||
if start != None: self.startState = start
|
||||
self.goal = goal
|
||||
self.costFn = costFn
|
||||
self.visualize = visualize
|
||||
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
|
||||
print 'Warning: this does not look like a regular search maze'
|
||||
|
||||
# For display purposes
|
||||
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
|
||||
|
||||
def getStartState(self):
|
||||
return self.startState
|
||||
|
||||
def isGoalState(self, state):
|
||||
isGoal = state == self.goal
|
||||
|
||||
# For display purposes only
|
||||
if isGoal and self.visualize:
|
||||
self._visitedlist.append(state)
|
||||
import __main__
|
||||
if '_display' in dir(__main__):
|
||||
if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable
|
||||
__main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable
|
||||
|
||||
return isGoal
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
Returns successor states, the actions they require, and a cost of 1.
|
||||
|
||||
As noted in search.py:
|
||||
For a given state, this should return a list of triples,
|
||||
(successor, action, stepCost), where 'successor' is a
|
||||
successor to the current state, 'action' is the action
|
||||
required to get there, and 'stepCost' is the incremental
|
||||
cost of expanding to that successor
|
||||
"""
|
||||
|
||||
successors = []
|
||||
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
x,y = state
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
if not self.walls[nextx][nexty]:
|
||||
nextState = (nextx, nexty)
|
||||
cost = self.costFn(nextState)
|
||||
successors.append( ( nextState, action, cost) )
|
||||
|
||||
# Bookkeeping for display purposes
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
if state not in self._visited:
|
||||
self._visited[state] = True
|
||||
self._visitedlist.append(state)
|
||||
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999.
|
||||
"""
|
||||
if actions == None: return 999999
|
||||
x,y= self.getStartState()
|
||||
cost = 0
|
||||
for action in actions:
|
||||
# Check figure out the next state and see whether its' legal
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]: return 999999
|
||||
cost += self.costFn((x,y))
|
||||
return cost
|
||||
|
||||
class StayEastSearchAgent(SearchAgent):
|
||||
"""
|
||||
An agent for position search with a cost function that penalizes being in
|
||||
positions on the West side of the board.
|
||||
|
||||
The cost function for stepping into a position (x,y) is 1/2^x.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.searchFunction = search.uniformCostSearch
|
||||
costFn = lambda pos: .5 ** pos[0]
|
||||
self.searchType = lambda state: PositionSearchProblem(state, costFn, (1, 1), None, False)
|
||||
|
||||
class StayWestSearchAgent(SearchAgent):
|
||||
"""
|
||||
An agent for position search with a cost function that penalizes being in
|
||||
positions on the East side of the board.
|
||||
|
||||
The cost function for stepping into a position (x,y) is 2^x.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.searchFunction = search.uniformCostSearch
|
||||
costFn = lambda pos: 2 ** pos[0]
|
||||
self.searchType = lambda state: PositionSearchProblem(state, costFn)
|
||||
|
||||
def manhattanHeuristic(position, problem, info={}):
|
||||
"The Manhattan distance heuristic for a PositionSearchProblem"
|
||||
xy1 = position
|
||||
xy2 = problem.goal
|
||||
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
|
||||
|
||||
def euclideanHeuristic(position, problem, info={}):
|
||||
"The Euclidean distance heuristic for a PositionSearchProblem"
|
||||
xy1 = position
|
||||
xy2 = problem.goal
|
||||
return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5
|
||||
|
||||
#####################################################
|
||||
# This portion is incomplete. Time to write code! #
|
||||
#####################################################
|
||||
|
||||
class CornersProblem(search.SearchProblem):
|
||||
"""
|
||||
This search problem finds paths through all four corners of a layout.
|
||||
|
||||
You must select a suitable state space and successor function
|
||||
"""
|
||||
|
||||
def __init__(self, startingGameState):
|
||||
"""
|
||||
Stores the walls, pacman's starting position and corners.
|
||||
"""
|
||||
self.walls = startingGameState.getWalls()
|
||||
self.startingPosition = startingGameState.getPacmanPosition()
|
||||
top, right = self.walls.height-2, self.walls.width-2
|
||||
self.corners = ((1,1), (1,top), (right, 1), (right, top))
|
||||
for corner in self.corners:
|
||||
if not startingGameState.hasFood(*corner):
|
||||
print 'Warning: no food in corner ' + str(corner)
|
||||
self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded
|
||||
# Please add any code here which you would like to use
|
||||
# in initializing the problem
|
||||
"*** YOUR CODE HERE ***"
|
||||
self.top = top
|
||||
self.right = right
|
||||
|
||||
def getStartState(self):
|
||||
"""
|
||||
Returns the start state (in your state space, not the full Pacman state
|
||||
space)
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
allCorners = (False,False,False,False)
|
||||
startState = (self.startingPosition,allCorners)
|
||||
return startState
|
||||
util.raiseNotDefined()
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
Returns whether this search state is a goal state of the problem.
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
Corners = state[1]
|
||||
return Corners[0] and Corners[1] and Corners[2] and Corners[3]
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
Returns successor states, the actions they require, and a cost of 1.
|
||||
|
||||
As noted in search.py:
|
||||
For a given state, this should return a list of triples, (successor,
|
||||
action, stepCost), where 'successor' is a successor to the current
|
||||
state, 'action' is the action required to get there, and 'stepCost'
|
||||
is the incremental cost of expanding to that successor
|
||||
"""
|
||||
|
||||
successors = []
|
||||
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
# Add a successor state to the successor list if the action is legal
|
||||
# Here's a code snippet for figuring out whether a new position hits a wall:
|
||||
# x,y = currentPosition
|
||||
# dx, dy = Actions.directionToVector(action)
|
||||
# nextx, nexty = int(x + dx), int(y + dy)
|
||||
# hitsWall = self.walls[nextx][nexty]
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
x,y = state[0]
|
||||
Corners = state[1]
|
||||
Corners_0 = Corners[0]
|
||||
Corners_1 = Corners[1]
|
||||
Corners_2 = Corners[2]
|
||||
Corners_3 = Corners[3]
|
||||
dx , dy = Actions.directionToVector(action)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
hitsWall = self.walls[nextx][nexty]
|
||||
newCorners = []
|
||||
newState = (nextx,nexty)
|
||||
if not hitsWall:
|
||||
if newState in self.corners:
|
||||
if newState == (1,1):
|
||||
newCorners = [True,Corners_1,Corners_2,Corners_3]
|
||||
elif newState == (1,self.top):
|
||||
newCorners = [Corners_0,True,Corners_2,Corners_3]
|
||||
elif newState == (self.right,1):
|
||||
newCorners = [Corners_0,Corners_1,True,Corners_3]
|
||||
elif newState == (self.right,self.top):
|
||||
newCorners = [Corners_0,Corners_1,Corners_2,True]
|
||||
successor =((newState,newCorners),action,1)
|
||||
else:
|
||||
successor = ((newState,Corners),action,1)
|
||||
successors.append(successor)
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999. This is implemented for you.
|
||||
"""
|
||||
if actions == None: return 999999
|
||||
x,y= self.startingPosition
|
||||
for action in actions:
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]: return 999999
|
||||
return len(actions)
|
||||
|
||||
|
||||
def cornersHeuristic(state, problem):
|
||||
"""
|
||||
A heuristic for the CornersProblem that you defined.
|
||||
|
||||
state: The current search state
|
||||
(a data structure you chose in your search problem)
|
||||
|
||||
problem: The CornersProblem instance for this layout.
|
||||
|
||||
This function should always return a number that is a lower bound on the
|
||||
shortest path from the state to a goal of the problem; i.e. it should be
|
||||
admissible (as well as consistent).
|
||||
"""
|
||||
corners = problem.corners # These are the corner coordinates
|
||||
walls = problem.walls # These are the walls of the maze, as a Grid (game.py)
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
currentPosition = state[0]
|
||||
stateCorners = state[1]
|
||||
top = walls.height - 2
|
||||
right = walls.width - 2
|
||||
Node = []
|
||||
for i in corners:
|
||||
if i == (1,1):
|
||||
if not stateCorners[0]:
|
||||
Node.append(i)
|
||||
elif i == (1,top):
|
||||
if not stateCorners[1]:
|
||||
Node.append(i)
|
||||
elif i == (right,top):
|
||||
if not stateCorners[2]:
|
||||
Node.append(i)
|
||||
elif i == (right,1):
|
||||
if not stateCorners[3]:
|
||||
Node.append(i)
|
||||
cost = 0
|
||||
position = currentPosition
|
||||
while len(Node) > 0:
|
||||
distArr = []
|
||||
for i in range(0,len(Node)):
|
||||
dist = util.manhattanDistance(position,Node[i])
|
||||
distArr.append(dist)
|
||||
miniDist = min(distArr)
|
||||
cost += miniDist
|
||||
miniDist_I = distArr.index(miniDist)
|
||||
position = Node[miniDist_I]
|
||||
del Node[miniDist_I]
|
||||
return cost # Default to trivial solution
|
||||
|
||||
class AStarCornersAgent(SearchAgent):
|
||||
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
|
||||
def __init__(self):
|
||||
self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic)
|
||||
self.searchType = CornersProblem
|
||||
|
||||
class FoodSearchProblem:
|
||||
"""
|
||||
A search problem associated with finding the a path that collects all of the
|
||||
food (dots) in a Pacman game.
|
||||
|
||||
A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where
|
||||
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
|
||||
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
|
||||
"""
|
||||
def __init__(self, startingGameState):
|
||||
self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood())
|
||||
self.walls = startingGameState.getWalls()
|
||||
self.startingGameState = startingGameState
|
||||
self._expanded = 0 # DO NOT CHANGE
|
||||
self.heuristicInfo = {} # A dictionary for the heuristic to store information
|
||||
|
||||
def getStartState(self):
|
||||
return self.start
|
||||
|
||||
def isGoalState(self, state):
|
||||
return state[1].count() == 0
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"Returns successor states, the actions they require, and a cost of 1."
|
||||
successors = []
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
x,y = state[0]
|
||||
dx, dy = Actions.directionToVector(direction)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
if not self.walls[nextx][nexty]:
|
||||
nextFood = state[1].copy()
|
||||
nextFood[nextx][nexty] = False
|
||||
successors.append( ( ((nextx, nexty), nextFood), direction, 1) )
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999"""
|
||||
x,y= self.getStartState()[0]
|
||||
cost = 0
|
||||
for action in actions:
|
||||
# figure out the next state and see whether it's legal
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]:
|
||||
return 999999
|
||||
cost += 1
|
||||
return cost
|
||||
|
||||
class AStarFoodSearchAgent(SearchAgent):
|
||||
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
|
||||
def __init__(self):
|
||||
self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic)
|
||||
self.searchType = FoodSearchProblem
|
||||
|
||||
def foodHeuristic(state, problem):
|
||||
"""
|
||||
Your heuristic for the FoodSearchProblem goes here.
|
||||
|
||||
This heuristic must be consistent to ensure correctness. First, try to come
|
||||
up with an admissible heuristic; almost all admissible heuristics will be
|
||||
consistent as well.
|
||||
|
||||
If using A* ever finds a solution that is worse uniform cost search finds,
|
||||
your heuristic is *not* consistent, and probably not admissible! On the
|
||||
other hand, inadmissible or inconsistent heuristics may find optimal
|
||||
solutions, so be careful.
|
||||
|
||||
The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid
|
||||
(see game.py) of either True or False. You can call foodGrid.asList() to get
|
||||
a list of food coordinates instead.
|
||||
|
||||
If you want access to info like walls, capsules, etc., you can query the
|
||||
problem. For example, problem.walls gives you a Grid of where the walls
|
||||
are.
|
||||
|
||||
If you want to *store* information to be reused in other calls to the
|
||||
heuristic, there is a dictionary called problem.heuristicInfo that you can
|
||||
use. For example, if you only want to count the walls once and store that
|
||||
value, try: problem.heuristicInfo['wallCount'] = problem.walls.count()
|
||||
Subsequent calls to this heuristic can access
|
||||
problem.heuristicInfo['wallCount']
|
||||
"""
|
||||
position, foodGrid = state
|
||||
"*** YOUR CODE HERE ***"
|
||||
hvalue = 0
|
||||
foodAvailable = []
|
||||
totalDistance = 0
|
||||
for i in range(0,foodGrid.width):
|
||||
for j in range(0,foodGrid.height):
|
||||
if foodGrid[i][j] == True:
|
||||
foodLocation = (i,j)
|
||||
foodAvailable.append(foodLocation)
|
||||
if len(foodAvailable) == 0:
|
||||
return 0
|
||||
maxDistance = ((0,0),(0,0),0)
|
||||
for currentFood in foodAvailable:
|
||||
for selectFood in foodAvailable:
|
||||
if currentFood == selectFood:
|
||||
pass
|
||||
else:
|
||||
distance = util.manhattanDistance(currentFood,selectFood)
|
||||
if maxDistance[2] < distance:
|
||||
maxDistance = (currentFood,selectFood,distance)
|
||||
if maxDistance[0] == (0,0) and maxDistance[1] == (0,0):
|
||||
hvalue = util.manhattanDistance(position,foodAvailable[0])
|
||||
else:
|
||||
dis_1 = util.manhattanDistance(position,maxDistance[0])
|
||||
dis_2 = util.manhattanDistance(position,maxDistance[1])
|
||||
hvalue = min(dis_1,dis_2) + maxDistance[2]
|
||||
return hvalue
|
||||
|
||||
class ClosestDotSearchAgent(SearchAgent):
|
||||
"Search for all food using a sequence of searches"
|
||||
def registerInitialState(self, state):
|
||||
self.actions = []
|
||||
currentState = state
|
||||
while(currentState.getFood().count() > 0):
|
||||
nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece
|
||||
self.actions += nextPathSegment
|
||||
for action in nextPathSegment:
|
||||
legal = currentState.getLegalActions()
|
||||
if action not in legal:
|
||||
t = (str(action), str(currentState))
|
||||
raise Exception, 'findPathToClosestDot returned an illegal move: %s!\n%s' % t
|
||||
currentState = currentState.generateSuccessor(0, action)
|
||||
self.actionIndex = 0
|
||||
print 'Path found with cost %d.' % len(self.actions)
|
||||
|
||||
def findPathToClosestDot(self, gameState):
|
||||
"""
|
||||
Returns a path (a list of actions) to the closest dot, starting from
|
||||
gameState.
|
||||
"""
|
||||
# Here are some useful elements of the startState
|
||||
startPosition = gameState.getPacmanPosition()
|
||||
food = gameState.getFood()
|
||||
walls = gameState.getWalls()
|
||||
problem = AnyFoodSearchProblem(gameState)
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
Result = []
|
||||
Visited = []
|
||||
Heap = util.PriorityQueue()
|
||||
startState = (problem.getStartState(),[],0)
|
||||
Heap.push(startState,startState[2])
|
||||
while not Heap.isEmpty():
|
||||
(state,path,cost) = Heap.pop()
|
||||
if problem.isGoalState(state):
|
||||
Result = path
|
||||
break
|
||||
if state not in Visited:
|
||||
Visited.append(state)
|
||||
for currentState,currentPath,currentCost in problem.getSuccessors(state):
|
||||
newPath = path + [currentPath]
|
||||
newCost = cost + currentCost
|
||||
newState = (currentState,newPath,newCost)
|
||||
Heap.push(newState,newCost)
|
||||
return Result
|
||||
util.raiseNotDefined()
|
||||
|
||||
class AnyFoodSearchProblem(PositionSearchProblem):
|
||||
"""
|
||||
A search problem for finding a path to any food.
|
||||
|
||||
This search problem is just like the PositionSearchProblem, but has a
|
||||
different goal test, which you need to fill in below. The state space and
|
||||
successor function do not need to be changed.
|
||||
|
||||
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
|
||||
inherits the methods of the PositionSearchProblem.
|
||||
|
||||
You can use this search problem to help you fill in the findPathToClosestDot
|
||||
method.
|
||||
"""
|
||||
|
||||
def __init__(self, gameState):
|
||||
"Stores information from the gameState. You don't need to change this."
|
||||
# Store the food for later reference
|
||||
self.food = gameState.getFood()
|
||||
|
||||
# Store info for the PositionSearchProblem (no need to change this)
|
||||
self.walls = gameState.getWalls()
|
||||
self.startState = gameState.getPacmanPosition()
|
||||
self.costFn = lambda x: 1
|
||||
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
The state is Pacman's position. Fill this in with a goal test that will
|
||||
complete the problem definition.
|
||||
"""
|
||||
x,y = state
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
|
||||
foodGrid = self.food
|
||||
if foodGrid[x][y] == True or foodGrid.count() == 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
util.raiseNotDefined()
|
||||
|
||||
|
||||
|
||||
def mazeDistance(point1, point2, gameState):
|
||||
"""
|
||||
Returns the maze distance between any two points, using the search functions
|
||||
you have already built. The gameState can be any game state -- Pacman's
|
||||
position in that state is ignored.
|
||||
|
||||
Example usage: mazeDistance( (2,4), (5,6), gameState)
|
||||
|
||||
This might be a useful helper function for your ApproximateSearchAgent.
|
||||
"""
|
||||
x1, y1 = point1
|
||||
x2, y2 = point2
|
||||
walls = gameState.getWalls()
|
||||
assert not walls[x1][y1], 'point1 is a wall: ' + str(point1)
|
||||
assert not walls[x2][y2], 'point2 is a wall: ' + str(point2)
|
||||
prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False, visualize=False)
|
||||
return len(search.bfs(prob))
|
Binary file not shown.
@ -0,0 +1,821 @@
|
||||
# searchTestClasses.py
|
||||
# --------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import re
|
||||
import testClasses
|
||||
import textwrap
|
||||
|
||||
# import project specific code
|
||||
import layout
|
||||
import pacman
|
||||
from search import SearchProblem
|
||||
|
||||
# helper function for printing solutions in solution files
|
||||
def wrap_solution(solution):
|
||||
if type(solution) == type([]):
|
||||
return '\n'.join(textwrap.wrap(' '.join(solution)))
|
||||
else:
|
||||
return str(solution)
|
||||
|
||||
|
||||
|
||||
|
||||
def followAction(state, action, problem):
|
||||
for successor1, action1, cost1 in problem.getSuccessors(state):
|
||||
if action == action1: return successor1
|
||||
return None
|
||||
|
||||
def followPath(path, problem):
|
||||
state = problem.getStartState()
|
||||
states = [state]
|
||||
for action in path:
|
||||
state = followAction(state, action, problem)
|
||||
states.append(state)
|
||||
return states
|
||||
|
||||
def checkSolution(problem, path):
|
||||
state = problem.getStartState()
|
||||
for action in path:
|
||||
state = followAction(state, action, problem)
|
||||
return problem.isGoalState(state)
|
||||
|
||||
# Search problem on a plain graph
|
||||
class GraphSearch(SearchProblem):
|
||||
|
||||
# Read in the state graph; define start/end states, edges and costs
|
||||
def __init__(self, graph_text):
|
||||
self.expanded_states = []
|
||||
lines = graph_text.split('\n')
|
||||
r = re.match('start_state:(.*)', lines[0])
|
||||
if r == None:
|
||||
print "Broken graph:"
|
||||
print '"""%s"""' % graph_text
|
||||
raise Exception("GraphSearch graph specification start_state not found or incorrect on line:" + l)
|
||||
self.start_state = r.group(1).strip()
|
||||
r = re.match('goal_states:(.*)', lines[1])
|
||||
if r == None:
|
||||
print "Broken graph:"
|
||||
print '"""%s"""' % graph_text
|
||||
raise Exception("GraphSearch graph specification goal_states not found or incorrect on line:" + l)
|
||||
goals = r.group(1).split()
|
||||
self.goals = map(str.strip, goals)
|
||||
self.successors = {}
|
||||
all_states = set()
|
||||
self.orderedSuccessorTuples = []
|
||||
for l in lines[2:]:
|
||||
if len(l.split()) == 3:
|
||||
start, action, next_state = l.split()
|
||||
cost = 1
|
||||
elif len(l.split()) == 4:
|
||||
start, action, next_state, cost = l.split()
|
||||
else:
|
||||
print "Broken graph:"
|
||||
print '"""%s"""' % graph_text
|
||||
raise Exception("Invalid line in GraphSearch graph specification on line:" + l)
|
||||
cost = float(cost)
|
||||
self.orderedSuccessorTuples.append((start, action, next_state, cost))
|
||||
all_states.add(start)
|
||||
all_states.add(next_state)
|
||||
if start not in self.successors:
|
||||
self.successors[start] = []
|
||||
self.successors[start].append((next_state, action, cost))
|
||||
for s in all_states:
|
||||
if s not in self.successors:
|
||||
self.successors[s] = []
|
||||
|
||||
# Get start state
|
||||
def getStartState(self):
|
||||
return self.start_state
|
||||
|
||||
# Check if a state is a goal state
|
||||
def isGoalState(self, state):
|
||||
return state in self.goals
|
||||
|
||||
# Get all successors of a state
|
||||
def getSuccessors(self, state):
|
||||
self.expanded_states.append(state)
|
||||
return list(self.successors[state])
|
||||
|
||||
# Calculate total cost of a sequence of actions
|
||||
def getCostOfActions(self, actions):
|
||||
total_cost = 0
|
||||
state = self.start_state
|
||||
for a in actions:
|
||||
successors = self.successors[state]
|
||||
match = False
|
||||
for (next_state, action, cost) in successors:
|
||||
if a == action:
|
||||
state = next_state
|
||||
total_cost += cost
|
||||
match = True
|
||||
if not match:
|
||||
print 'invalid action sequence'
|
||||
sys.exit(1)
|
||||
return total_cost
|
||||
|
||||
# Return a list of all states on which 'getSuccessors' was called
|
||||
def getExpandedStates(self):
|
||||
return self.expanded_states
|
||||
|
||||
def __str__(self):
|
||||
print self.successors
|
||||
edges = ["%s %s %s %s" % t for t in self.orderedSuccessorTuples]
|
||||
return \
|
||||
"""start_state: %s
|
||||
goal_states: %s
|
||||
%s""" % (self.start_state, " ".join(self.goals), "\n".join(edges))
|
||||
|
||||
|
||||
|
||||
def parseHeuristic(heuristicText):
|
||||
heuristic = {}
|
||||
for line in heuristicText.split('\n'):
|
||||
tokens = line.split()
|
||||
if len(tokens) != 2:
|
||||
print "Broken heuristic:"
|
||||
print '"""%s"""' % graph_text
|
||||
raise Exception("GraphSearch heuristic specification broken:" + l)
|
||||
state, h = tokens
|
||||
heuristic[state] = float(h)
|
||||
|
||||
def graphHeuristic(state, problem=None):
|
||||
if state in heuristic:
|
||||
return heuristic[state]
|
||||
else:
|
||||
pp = pprint.PrettyPrinter(indent=4)
|
||||
print "Heuristic:"
|
||||
pp.pprint(heuristic)
|
||||
raise Exception("Graph heuristic called with invalid state: " + str(state))
|
||||
|
||||
return graphHeuristic
|
||||
|
||||
|
||||
class GraphSearchTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(GraphSearchTest, self).__init__(question, testDict)
|
||||
self.graph_text = testDict['graph']
|
||||
self.alg = testDict['algorithm']
|
||||
self.diagram = testDict['diagram']
|
||||
self.exactExpansionOrder = testDict.get('exactExpansionOrder', 'True').lower() == "true"
|
||||
if 'heuristic' in testDict:
|
||||
self.heuristic = parseHeuristic(testDict['heuristic'])
|
||||
else:
|
||||
self.heuristic = None
|
||||
|
||||
# Note that the return type of this function is a tripple:
|
||||
# (solution, expanded states, error message)
|
||||
def getSolInfo(self, search):
|
||||
alg = getattr(search, self.alg)
|
||||
problem = GraphSearch(self.graph_text)
|
||||
if self.heuristic != None:
|
||||
solution = alg(problem, self.heuristic)
|
||||
else:
|
||||
solution = alg(problem)
|
||||
|
||||
if type(solution) != type([]):
|
||||
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
|
||||
|
||||
return solution, problem.getExpandedStates(), None
|
||||
|
||||
# Run student code. If an error message is returned, print error and return false.
|
||||
# If a good solution is returned, printn the solution and return true; otherwise,
|
||||
# print both the correct and student's solution and return false.
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
|
||||
gold_expanded_states = [str.split(solutionDict['expanded_states']), str.split(solutionDict['rev_expanded_states'])]
|
||||
|
||||
solution, expanded_states, error = self.getSolInfo(search)
|
||||
if error != None:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\t%s' % error)
|
||||
return False
|
||||
|
||||
if solution in gold_solution and (not self.exactExpansionOrder or expanded_states in gold_expanded_states):
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tsolution:\t\t%s' % solution)
|
||||
grades.addMessage('\texpanded_states:\t%s' % expanded_states)
|
||||
return True
|
||||
else:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\tgraph:')
|
||||
for line in self.diagram.split('\n'):
|
||||
grades.addMessage('\t %s' % (line,))
|
||||
grades.addMessage('\tstudent solution:\t\t%s' % solution)
|
||||
grades.addMessage('\tstudent expanded_states:\t%s' % expanded_states)
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution:\t\t%s' % gold_solution[0])
|
||||
grades.addMessage('\tcorrect expanded_states:\t%s' % gold_expanded_states[0])
|
||||
grades.addMessage('\tcorrect rev_solution:\t\t%s' % gold_solution[1])
|
||||
grades.addMessage('\tcorrect rev_expanded_states:\t%s' % gold_expanded_states[1])
|
||||
return False
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# This solution is designed to support both right-to-left\n')
|
||||
handle.write('# and left-to-right implementations.\n')
|
||||
|
||||
# write forward solution
|
||||
solution, expanded_states, error = self.getSolInfo(search)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('solution: "%s"\n' % ' '.join(solution))
|
||||
handle.write('expanded_states: "%s"\n' % ' '.join(expanded_states))
|
||||
|
||||
# reverse and write backwards solution
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
solution, expanded_states, error = self.getSolInfo(search)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('rev_solution: "%s"\n' % ' '.join(solution))
|
||||
handle.write('rev_expanded_states: "%s"\n' % ' '.join(expanded_states))
|
||||
|
||||
# clean up
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
class PacmanSearchTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(PacmanSearchTest, self).__init__(question, testDict)
|
||||
self.layout_text = testDict['layout']
|
||||
self.alg = testDict['algorithm']
|
||||
self.layoutName = testDict['layoutName']
|
||||
|
||||
# TODO: sensible to have defaults like this?
|
||||
self.leewayFactor = float(testDict.get('leewayFactor', '1'))
|
||||
self.costFn = eval(testDict.get('costFn', 'None'))
|
||||
self.searchProblemClassName = testDict.get('searchProblemClass', 'PositionSearchProblem')
|
||||
self.heuristicName = testDict.get('heuristic', None)
|
||||
|
||||
|
||||
def getSolInfo(self, search, searchAgents):
|
||||
alg = getattr(search, self.alg)
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
start_state = pacman.GameState()
|
||||
start_state.initialize(lay, 0)
|
||||
|
||||
problemClass = getattr(searchAgents, self.searchProblemClassName)
|
||||
problemOptions = {}
|
||||
if self.costFn != None:
|
||||
problemOptions['costFn'] = self.costFn
|
||||
problem = problemClass(start_state, **problemOptions)
|
||||
heuristic = getattr(searchAgents, self.heuristicName) if self.heuristicName != None else None
|
||||
|
||||
if heuristic != None:
|
||||
solution = alg(problem, heuristic)
|
||||
else:
|
||||
solution = alg(problem)
|
||||
|
||||
if type(solution) != type([]):
|
||||
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
|
||||
|
||||
from game import Directions
|
||||
dirs = Directions.LEFT.keys()
|
||||
if [el in dirs for el in solution].count(False) != 0:
|
||||
return None, None, 'Output of %s must be a list of actions from game.Directions' % self.alg
|
||||
|
||||
expanded = problem._expanded
|
||||
return solution, expanded, None
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
|
||||
gold_expanded = max(int(solutionDict['expanded_nodes']), int(solutionDict['rev_expanded_nodes']))
|
||||
|
||||
solution, expanded, error = self.getSolInfo(search, searchAgents)
|
||||
if error != None:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('%s' % error)
|
||||
return False
|
||||
|
||||
# FIXME: do we want to standardize test output format?
|
||||
|
||||
if solution not in gold_solution:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Solution not correct.')
|
||||
grades.addMessage('\tstudent solution length: %s' % len(solution))
|
||||
grades.addMessage('\tstudent solution:\n%s' % wrap_solution(solution))
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution length: %s' % len(gold_solution[0]))
|
||||
grades.addMessage('\tcorrect (reversed) solution length: %s' % len(gold_solution[1]))
|
||||
grades.addMessage('\tcorrect solution:\n%s' % wrap_solution(gold_solution[0]))
|
||||
grades.addMessage('\tcorrect (reversed) solution:\n%s' % wrap_solution(gold_solution[1]))
|
||||
return False
|
||||
|
||||
if expanded > self.leewayFactor * gold_expanded and expanded > gold_expanded + 1:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Too many node expanded; are you expanding nodes twice?')
|
||||
grades.addMessage('\tstudent nodes expanded: %s' % expanded)
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect nodes expanded: %s (leewayFactor %s)' % (gold_expanded, self.leewayFactor))
|
||||
return False
|
||||
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
|
||||
grades.addMessage('\tsolution length: %s' % len(solution))
|
||||
grades.addMessage('\tnodes expanded:\t\t%s' % expanded)
|
||||
return True
|
||||
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# This solution is designed to support both right-to-left\n')
|
||||
handle.write('# and left-to-right implementations.\n')
|
||||
handle.write('# Number of nodes expanded must be with a factor of %s of the numbers below.\n' % self.leewayFactor)
|
||||
|
||||
# write forward solution
|
||||
solution, expanded, error = self.getSolInfo(search, searchAgents)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('solution: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.write('expanded_nodes: "%s"\n' % expanded)
|
||||
|
||||
# write backward solution
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
solution, expanded, error = self.getSolInfo(search, searchAgents)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('rev_solution: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.write('rev_expanded_nodes: "%s"\n' % expanded)
|
||||
|
||||
# clean up
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
from game import Actions
|
||||
def getStatesFromPath(start, path):
|
||||
"Returns the list of states visited along the path"
|
||||
vis = [start]
|
||||
curr = start
|
||||
for a in path:
|
||||
x,y = curr
|
||||
dx, dy = Actions.directionToVector(a)
|
||||
curr = (int(x + dx), int(y + dy))
|
||||
vis.append(curr)
|
||||
return vis
|
||||
|
||||
class CornerProblemTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(CornerProblemTest, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
|
||||
def solution(self, search, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(gameState)
|
||||
path = search.bfs(problem)
|
||||
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
visited = getStatesFromPath(gameState.getPacmanPosition(), path)
|
||||
top, right = gameState.getWalls().height-2, gameState.getWalls().width-2
|
||||
missedCorners = [p for p in ((1,1), (1,top), (right, 1), (right, top)) if p not in visited]
|
||||
|
||||
return path, missedCorners
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_length = int(solutionDict['solution_length'])
|
||||
solution, missedCorners = self.solution(search, searchAgents)
|
||||
|
||||
if type(solution) != type([]):
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('The result must be a list. (Instead, it is %s)' % type(solution))
|
||||
return False
|
||||
|
||||
if len(missedCorners) != 0:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Corners missed: %s' % missedCorners)
|
||||
return False
|
||||
|
||||
if len(solution) != gold_length:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Optimal solution not found.')
|
||||
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
|
||||
return False
|
||||
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
|
||||
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
print "Solving problem", self.layoutName
|
||||
print self.layoutText
|
||||
|
||||
path, _ = self.solution(search, searchAgents)
|
||||
length = len(path)
|
||||
print "Problem solved"
|
||||
|
||||
handle.write('solution_length: "%s"\n' % length)
|
||||
handle.close()
|
||||
|
||||
|
||||
|
||||
|
||||
# template = """class: "HeuristicTest"
|
||||
#
|
||||
# heuristic: "foodHeuristic"
|
||||
# searchProblemClass: "FoodSearchProblem"
|
||||
# layoutName: "Test %s"
|
||||
# layout: \"\"\"
|
||||
# %s
|
||||
# \"\"\"
|
||||
# """
|
||||
#
|
||||
# for i, (_, _, l) in enumerate(doneTests + foodTests):
|
||||
# f = open("food_heuristic_%s.test" % (i+1), "w")
|
||||
# f.write(template % (i+1, "\n".join(l)))
|
||||
# f.close()
|
||||
|
||||
class HeuristicTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(HeuristicTest, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
self.searchProblemClassName = testDict['searchProblemClass']
|
||||
self.heuristicName = testDict['heuristic']
|
||||
|
||||
def setupProblem(self, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
problemClass = getattr(searchAgents, self.searchProblemClassName)
|
||||
problem = problemClass(gameState)
|
||||
state = problem.getStartState()
|
||||
heuristic = getattr(searchAgents, self.heuristicName)
|
||||
|
||||
return problem, state, heuristic
|
||||
|
||||
def checkHeuristic(self, heuristic, problem, state, solutionCost):
|
||||
h0 = heuristic(state, problem)
|
||||
|
||||
if solutionCost == 0:
|
||||
if h0 == 0:
|
||||
return True, ''
|
||||
else:
|
||||
return False, 'Heuristic failed H(goal) == 0 test'
|
||||
|
||||
if h0 < 0:
|
||||
return False, 'Heuristic failed H >= 0 test'
|
||||
if not h0 > 0:
|
||||
return False, 'Heuristic failed non-triviality test'
|
||||
if not h0 <= solutionCost:
|
||||
return False, 'Heuristic failed admissibility test'
|
||||
|
||||
for succ, action, stepCost in problem.getSuccessors(state):
|
||||
h1 = heuristic(succ, problem)
|
||||
if h1 < 0: return False, 'Heuristic failed H >= 0 test'
|
||||
if h0 - h1 > stepCost: return False, 'Heuristic failed consistency test'
|
||||
|
||||
return True, ''
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
solutionCost = int(solutionDict['solution_cost'])
|
||||
problem, state, heuristic = self.setupProblem(searchAgents)
|
||||
|
||||
passed, message = self.checkHeuristic(heuristic, problem, state, solutionCost)
|
||||
|
||||
if not passed:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('%s' % message)
|
||||
return False
|
||||
else:
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
print "Solving problem", self.layoutName, self.heuristicName
|
||||
print self.layoutText
|
||||
problem, _, heuristic = self.setupProblem(searchAgents)
|
||||
path = search.astar(problem, heuristic)
|
||||
cost = problem.getCostOfActions(path)
|
||||
print "Problem solved"
|
||||
|
||||
handle.write('solution_cost: "%s"\n' % cost)
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class HeuristicGrade(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(HeuristicGrade, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
self.searchProblemClassName = testDict['searchProblemClass']
|
||||
self.heuristicName = testDict['heuristic']
|
||||
self.basePoints = int(testDict['basePoints'])
|
||||
self.thresholds = [int(t) for t in testDict['gradingThresholds'].split()]
|
||||
|
||||
def setupProblem(self, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
problemClass = getattr(searchAgents, self.searchProblemClassName)
|
||||
problem = problemClass(gameState)
|
||||
state = problem.getStartState()
|
||||
heuristic = getattr(searchAgents, self.heuristicName)
|
||||
|
||||
return problem, state, heuristic
|
||||
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
problem, _, heuristic = self.setupProblem(searchAgents)
|
||||
|
||||
path = search.astar(problem, heuristic)
|
||||
|
||||
expanded = problem._expanded
|
||||
|
||||
if not checkSolution(problem, path):
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\tReturned path is not a solution.')
|
||||
grades.addMessage('\tpath returned by astar: %s' % expanded)
|
||||
return False
|
||||
|
||||
grades.addPoints(self.basePoints)
|
||||
points = 0
|
||||
for threshold in self.thresholds:
|
||||
if expanded <= threshold:
|
||||
points += 1
|
||||
grades.addPoints(points)
|
||||
if points >= len(self.thresholds):
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
else:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\texpanded nodes: %s' % expanded)
|
||||
grades.addMessage('\tthresholds: %s' % self.thresholds)
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# File intentionally blank.\n')
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# template = """class: "ClosestDotTest"
|
||||
#
|
||||
# layoutName: "Test %s"
|
||||
# layout: \"\"\"
|
||||
# %s
|
||||
# \"\"\"
|
||||
# """
|
||||
#
|
||||
# for i, (_, _, l) in enumerate(foodTests):
|
||||
# f = open("closest_dot_%s.test" % (i+1), "w")
|
||||
# f.write(template % (i+1, "\n".join(l)))
|
||||
# f.close()
|
||||
|
||||
class ClosestDotTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(ClosestDotTest, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
|
||||
def solution(self, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
path = searchAgents.ClosestDotSearchAgent().findPathToClosestDot(gameState)
|
||||
return path
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_length = int(solutionDict['solution_length'])
|
||||
solution = self.solution(searchAgents)
|
||||
|
||||
if type(solution) != type([]):
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\tThe result must be a list. (Instead, it is %s)' % type(solution))
|
||||
return False
|
||||
|
||||
if len(solution) != gold_length:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Closest dot not found.')
|
||||
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
|
||||
return False
|
||||
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
|
||||
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
print "Solving problem", self.layoutName
|
||||
print self.layoutText
|
||||
|
||||
length = len(self.solution(searchAgents))
|
||||
print "Problem solved"
|
||||
|
||||
handle.write('solution_length: "%s"\n' % length)
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
class CornerHeuristicSanity(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(CornerHeuristicSanity, self).__init__(question, testDict)
|
||||
self.layout_text = testDict['layout']
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
game_state = pacman.GameState()
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
game_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(game_state)
|
||||
start_state = problem.getStartState()
|
||||
h0 = searchAgents.cornersHeuristic(start_state, problem)
|
||||
succs = problem.getSuccessors(start_state)
|
||||
# cornerConsistencyA
|
||||
for succ in succs:
|
||||
h1 = searchAgents.cornersHeuristic(succ[0], problem)
|
||||
if h0 - h1 > 1:
|
||||
grades.addMessage('FAIL: inconsistent heuristic')
|
||||
return False
|
||||
heuristic_cost = searchAgents.cornersHeuristic(start_state, problem)
|
||||
true_cost = float(solutionDict['cost'])
|
||||
# cornerNontrivial
|
||||
if heuristic_cost == 0:
|
||||
grades.addMessage('FAIL: must use non-trivial heuristic')
|
||||
return False
|
||||
# cornerAdmissible
|
||||
if heuristic_cost > true_cost:
|
||||
grades.addMessage('FAIL: Inadmissible heuristic')
|
||||
return False
|
||||
path = solutionDict['path'].split()
|
||||
states = followPath(path, problem)
|
||||
heuristics = []
|
||||
for state in states:
|
||||
heuristics.append(searchAgents.cornersHeuristic(state, problem))
|
||||
for i in range(0, len(heuristics) - 1):
|
||||
h0 = heuristics[i]
|
||||
h1 = heuristics[i+1]
|
||||
# cornerConsistencyB
|
||||
if h0 - h1 > 1:
|
||||
grades.addMessage('FAIL: inconsistent heuristic')
|
||||
return False
|
||||
# cornerPosH
|
||||
if h0 < 0 or h1 <0:
|
||||
grades.addMessage('FAIL: non-positive heuristic')
|
||||
return False
|
||||
# cornerGoalH
|
||||
if heuristics[len(heuristics) - 1] != 0:
|
||||
grades.addMessage('FAIL: heuristic non-zero at goal')
|
||||
return False
|
||||
grades.addMessage('PASS: heuristic value less than true cost at start state')
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# write comment
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# In order for a heuristic to be admissible, the value\n')
|
||||
handle.write('# of the heuristic must be less at each state than the\n')
|
||||
handle.write('# true cost of the optimal path from that state to a goal.\n')
|
||||
|
||||
# solve problem and write solution
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
start_state = pacman.GameState()
|
||||
start_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(start_state)
|
||||
solution = search.astar(problem, searchAgents.cornersHeuristic)
|
||||
handle.write('cost: "%d"\n' % len(solution))
|
||||
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
class CornerHeuristicPacman(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(CornerHeuristicPacman, self).__init__(question, testDict)
|
||||
self.layout_text = testDict['layout']
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
total = 0
|
||||
true_cost = float(solutionDict['cost'])
|
||||
thresholds = map(int, solutionDict['thresholds'].split())
|
||||
game_state = pacman.GameState()
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
game_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(game_state)
|
||||
start_state = problem.getStartState()
|
||||
if searchAgents.cornersHeuristic(start_state, problem) > true_cost:
|
||||
grades.addMessage('FAIL: Inadmissible heuristic')
|
||||
return False
|
||||
path = search.astar(problem, searchAgents.cornersHeuristic)
|
||||
print "path:", path
|
||||
print "path length:", len(path)
|
||||
cost = problem.getCostOfActions(path)
|
||||
if cost > true_cost:
|
||||
grades.addMessage('FAIL: Inconsistent heuristic')
|
||||
return False
|
||||
expanded = problem._expanded
|
||||
points = 0
|
||||
for threshold in thresholds:
|
||||
if expanded <= threshold:
|
||||
points += 1
|
||||
grades.addPoints(points)
|
||||
if points >= len(thresholds):
|
||||
grades.addMessage('PASS: Heuristic resulted in expansion of %d nodes' % expanded)
|
||||
else:
|
||||
grades.addMessage('FAIL: Heuristic resulted in expansion of %d nodes' % expanded)
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# write comment
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This solution file specifies the length of the optimal path\n')
|
||||
handle.write('# as well as the thresholds on number of nodes expanded to be\n')
|
||||
handle.write('# used in scoring.\n')
|
||||
|
||||
# solve problem and write solution
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
start_state = pacman.GameState()
|
||||
start_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(start_state)
|
||||
solution = search.astar(problem, searchAgents.cornersHeuristic)
|
||||
handle.write('cost: "%d"\n' % len(solution))
|
||||
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.write('thresholds: "2000 1600 1200"\n')
|
||||
handle.close()
|
||||
return True
|
||||
|
File diff suppressed because one or more lines are too long
@ -0,0 +1,206 @@
|
||||
# testClasses.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# import modules from python standard library
|
||||
import inspect
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
# Class which models a question in a project. Note that questions have a
|
||||
# maximum number of points they are worth, and are composed of a series of
|
||||
# test cases
|
||||
class Question(object):
|
||||
|
||||
def raiseNotDefined(self):
|
||||
print 'Method not implemented: %s' % inspect.stack()[1][3]
|
||||
sys.exit(1)
|
||||
|
||||
def __init__(self, questionDict, display):
|
||||
self.maxPoints = int(questionDict['max_points'])
|
||||
self.testCases = []
|
||||
self.display = display
|
||||
|
||||
def getDisplay(self):
|
||||
return self.display
|
||||
|
||||
def getMaxPoints(self):
|
||||
return self.maxPoints
|
||||
|
||||
# Note that 'thunk' must be a function which accepts a single argument,
|
||||
# namely a 'grading' object
|
||||
def addTestCase(self, testCase, thunk):
|
||||
self.testCases.append((testCase, thunk))
|
||||
|
||||
def execute(self, grades):
|
||||
self.raiseNotDefined()
|
||||
|
||||
# Question in which all test cases must be passed in order to receive credit
|
||||
class PassAllTestsQuestion(Question):
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
testsFailed = False
|
||||
grades.assignZeroCredit()
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
testsFailed = True
|
||||
if testsFailed:
|
||||
grades.fail("Tests failed.")
|
||||
else:
|
||||
grades.assignFullCredit()
|
||||
|
||||
class ExtraCreditPassAllTestsQuestion(Question):
|
||||
def __init__(self, questionDict, display):
|
||||
Question.__init__(self, questionDict, display)
|
||||
self.extraPoints = int(questionDict['extra_points'])
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
testsFailed = False
|
||||
grades.assignZeroCredit()
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
testsFailed = True
|
||||
if testsFailed:
|
||||
grades.fail("Tests failed.")
|
||||
else:
|
||||
grades.assignFullCredit()
|
||||
grades.addPoints(self.extraPoints)
|
||||
|
||||
# Question in which predict credit is given for test cases with a ``points'' property.
|
||||
# All other tests are mandatory and must be passed.
|
||||
class HackedPartialCreditQuestion(Question):
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
grades.assignZeroCredit()
|
||||
|
||||
points = 0
|
||||
passed = True
|
||||
for testCase, f in self.testCases:
|
||||
testResult = f(grades)
|
||||
if "points" in testCase.testDict:
|
||||
if testResult: points += float(testCase.testDict["points"])
|
||||
else:
|
||||
passed = passed and testResult
|
||||
|
||||
## FIXME: Below terrible hack to match q3's logic
|
||||
if int(points) == self.maxPoints and not passed:
|
||||
grades.assignZeroCredit()
|
||||
else:
|
||||
grades.addPoints(int(points))
|
||||
|
||||
|
||||
class Q6PartialCreditQuestion(Question):
|
||||
"""Fails any test which returns False, otherwise doesn't effect the grades object.
|
||||
Partial credit tests will add the required points."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.assignZeroCredit()
|
||||
|
||||
results = []
|
||||
for _, f in self.testCases:
|
||||
results.append(f(grades))
|
||||
if False in results:
|
||||
grades.assignZeroCredit()
|
||||
|
||||
class PartialCreditQuestion(Question):
|
||||
"""Fails any test which returns False, otherwise doesn't effect the grades object.
|
||||
Partial credit tests will add the required points."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.assignZeroCredit()
|
||||
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
grades.assignZeroCredit()
|
||||
grades.fail("Tests failed.")
|
||||
return False
|
||||
|
||||
|
||||
|
||||
class NumberPassedQuestion(Question):
|
||||
"""Grade is the number of test cases passed."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.addPoints([f(grades) for _, f in self.testCases].count(True))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Template modeling a generic test case
|
||||
class TestCase(object):
|
||||
|
||||
def raiseNotDefined(self):
|
||||
print 'Method not implemented: %s' % inspect.stack()[1][3]
|
||||
sys.exit(1)
|
||||
|
||||
def getPath(self):
|
||||
return self.path
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
self.question = question
|
||||
self.testDict = testDict
|
||||
self.path = testDict['path']
|
||||
self.messages = []
|
||||
|
||||
def __str__(self):
|
||||
self.raiseNotDefined()
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
self.raiseNotDefined()
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
self.raiseNotDefined()
|
||||
return True
|
||||
|
||||
# Tests should call the following messages for grading
|
||||
# to ensure a uniform format for test output.
|
||||
#
|
||||
# TODO: this is hairy, but we need to fix grading.py's interface
|
||||
# to get a nice hierarchical project - question - test structure,
|
||||
# then these should be moved into Question proper.
|
||||
def testPass(self, grades):
|
||||
grades.addMessage('PASS: %s' % (self.path,))
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
return True
|
||||
|
||||
def testFail(self, grades):
|
||||
grades.addMessage('FAIL: %s' % (self.path,))
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
return False
|
||||
|
||||
# This should really be question level?
|
||||
#
|
||||
def testPartial(self, grades, points, maxPoints):
|
||||
grades.addPoints(points)
|
||||
extraCredit = max(0, points - maxPoints)
|
||||
regularCredit = points - extraCredit
|
||||
|
||||
grades.addMessage('%s: %s (%s of %s points)' % ("PASS" if points >= maxPoints else "FAIL", self.path, regularCredit, maxPoints))
|
||||
if extraCredit > 0:
|
||||
grades.addMessage('EXTRA CREDIT: %s points' % (extraCredit,))
|
||||
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
|
||||
return True
|
||||
|
||||
def addMessage(self, message):
|
||||
self.messages.extend(message.split('\n'))
|
||||
|
@ -0,0 +1,85 @@
|
||||
# testParser.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import re
|
||||
import sys
|
||||
|
||||
class TestParser(object):
|
||||
|
||||
def __init__(self, path):
|
||||
# save the path to the test file
|
||||
self.path = path
|
||||
|
||||
def removeComments(self, rawlines):
|
||||
# remove any portion of a line following a '#' symbol
|
||||
fixed_lines = []
|
||||
for l in rawlines:
|
||||
idx = l.find('#')
|
||||
if idx == -1:
|
||||
fixed_lines.append(l)
|
||||
else:
|
||||
fixed_lines.append(l[0:idx])
|
||||
return '\n'.join(fixed_lines)
|
||||
|
||||
def parse(self):
|
||||
# read in the test case and remove comments
|
||||
test = {}
|
||||
with open(self.path) as handle:
|
||||
raw_lines = handle.read().split('\n')
|
||||
|
||||
test_text = self.removeComments(raw_lines)
|
||||
test['__raw_lines__'] = raw_lines
|
||||
test['path'] = self.path
|
||||
test['__emit__'] = []
|
||||
lines = test_text.split('\n')
|
||||
i = 0
|
||||
# read a property in each loop cycle
|
||||
while(i < len(lines)):
|
||||
# skip blank lines
|
||||
if re.match('\A\s*\Z', lines[i]):
|
||||
test['__emit__'].append(("raw", raw_lines[i]))
|
||||
i += 1
|
||||
continue
|
||||
m = re.match('\A([^"]*?):\s*"([^"]*)"\s*\Z', lines[i])
|
||||
if m:
|
||||
test[m.group(1)] = m.group(2)
|
||||
test['__emit__'].append(("oneline", m.group(1)))
|
||||
i += 1
|
||||
continue
|
||||
m = re.match('\A([^"]*?):\s*"""\s*\Z', lines[i])
|
||||
if m:
|
||||
msg = []
|
||||
i += 1
|
||||
while(not re.match('\A\s*"""\s*\Z', lines[i])):
|
||||
msg.append(raw_lines[i])
|
||||
i += 1
|
||||
test[m.group(1)] = '\n'.join(msg)
|
||||
test['__emit__'].append(("multiline", m.group(1)))
|
||||
i += 1
|
||||
continue
|
||||
print 'error parsing test file: %s' % self.path
|
||||
sys.exit(1)
|
||||
return test
|
||||
|
||||
|
||||
def emitTestDict(testDict, handle):
|
||||
for kind, data in testDict['__emit__']:
|
||||
if kind == "raw":
|
||||
handle.write(data + "\n")
|
||||
elif kind == "oneline":
|
||||
handle.write('%s: "%s"\n' % (data, testDict[data]))
|
||||
elif kind == "multiline":
|
||||
handle.write('%s: """\n%s\n"""\n' % (data, testDict[data]))
|
||||
else:
|
||||
raise Exception("Bad __emit__")
|
@ -0,0 +1 @@
|
||||
order: "q1 q2 q3 q4 q5 q6 q7 q8"
|
@ -0,0 +1,2 @@
|
||||
max_points: "3"
|
||||
class: "PassAllTestsQuestion"
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_backtrack.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->C 0:C->G"
|
||||
expanded_states: "A D C"
|
||||
rev_solution: "1:A->C 0:C->G"
|
||||
rev_expanded_states: "A B C"
|
@ -0,0 +1,32 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B
|
||||
^
|
||||
|
|
||||
*A --> C --> G
|
||||
|
|
||||
V
|
||||
D
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This tests whether
|
||||
you extract the sequence of actions correctly even
|
||||
if your search backtracks. If you fail this, your
|
||||
nodes are not correctly tracking the sequences of
|
||||
actions required to reach them.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->D D 4.0
|
||||
C 0:C->G G 8.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_bfs_vs_dfs.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "2:A->D 0:D->G"
|
||||
expanded_states: "A D"
|
||||
rev_solution: "0:A->B 0:B->D 0:D->G"
|
||||
rev_expanded_states: "A B D"
|
@ -0,0 +1,30 @@
|
||||
# Graph where BFS finds the optimal solution but DFS does not
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
/-- B
|
||||
| ^
|
||||
| |
|
||||
| *A -->[G]
|
||||
| | ^
|
||||
| V |
|
||||
\-->D ----/
|
||||
|
||||
A is the start state, G is the goal. Arrows
|
||||
mark possible transitions
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->G G 2.0
|
||||
A 2:A->D D 4.0
|
||||
B 0:B->D D 8.0
|
||||
D 0:D->G G 16.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_infinite.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "0:A->B 1:B->C 1:C->G"
|
||||
expanded_states: "A B C"
|
||||
rev_solution: "0:A->B 1:B->C 1:C->G"
|
||||
rev_expanded_states: "A B C"
|
@ -0,0 +1,30 @@
|
||||
# Graph where natural action choice leads to an infinite loop
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B <--> C
|
||||
^ /|
|
||||
| / |
|
||||
V / V
|
||||
*A<-/ [G]
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
B 0:B->A A 2.0
|
||||
B 1:B->C C 4.0
|
||||
C 0:C->A A 8.0
|
||||
C 1:C->G G 16.0
|
||||
C 2:C->B B 32.0
|
||||
"""
|
||||
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_manypaths.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "2:A->B2 0:B2->C 0:C->D 2:D->E2 0:E2->F 0:F->G"
|
||||
expanded_states: "A B2 C D E2 F"
|
||||
rev_solution: "0:A->B1 0:B1->C 0:C->D 0:D->E1 0:E1->F 0:F->G"
|
||||
rev_expanded_states: "A B1 C D E1 F"
|
@ -0,0 +1,39 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B1 E1
|
||||
^ \ ^ \
|
||||
/ V / V
|
||||
*A --> C --> D --> F --> [G]
|
||||
\ ^ \ ^
|
||||
V / V /
|
||||
B2 E2
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This graph has multiple
|
||||
paths to the goal, where nodes with the same state
|
||||
are added to the fringe multiple times before they
|
||||
are expanded.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B1 B1 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->B2 B2 4.0
|
||||
B1 0:B1->C C 8.0
|
||||
B2 0:B2->C C 16.0
|
||||
C 0:C->D D 32.0
|
||||
D 0:D->E1 E1 64.0
|
||||
D 1:D->F F 128.0
|
||||
D 2:D->E2 E2 256.0
|
||||
E1 0:E1->F F 512.0
|
||||
E2 0:E2->F F 1024.0
|
||||
F 0:F->G G 2048.0
|
||||
"""
|
@ -0,0 +1,40 @@
|
||||
# This is the solution file for test_cases/q1/pacman_1.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
# Number of nodes expanded must be with a factor of 1.0 of the numbers below.
|
||||
solution: """
|
||||
West West West West West West West West West West West West West West
|
||||
West West West West West West West West West West West West West West
|
||||
West West West West West South South South South South South South
|
||||
South South East East East North North North North North North North
|
||||
East East South South South South South South East East North North
|
||||
North North North North East East South South South South East East
|
||||
North North East East East East East East East East South South South
|
||||
East East East East East East East South South South South South South
|
||||
South West West West West West West West West West West West West West
|
||||
West West West West South West West West West West West West West West
|
||||
"""
|
||||
expanded_nodes: "146"
|
||||
rev_solution: """
|
||||
South South West West West West South South East East East East South
|
||||
South West West West West South South East East East East South South
|
||||
West West West West South South South East North East East East South
|
||||
South South West West West West West West West North North North North
|
||||
North North North North West West West West West West West North North
|
||||
North East East East East South East East East North North North West
|
||||
West North North West West West West West West West West West West
|
||||
West West West West West West West West West West West West West West
|
||||
South South South South South South South South South East East East
|
||||
North North North North North North North East East South South South
|
||||
South South South East East North North North North North North East
|
||||
East South South South South East East North North North North East
|
||||
East East East East South South West West West South South East East
|
||||
East South South West West West West West West South South West West
|
||||
West West West South West West West West West South South East East
|
||||
East East East East East North East East East East East North North
|
||||
East East East East East East North East East East East East South
|
||||
South West West West South West West West West West West South South
|
||||
West West West West West South West West West West West West West West
|
||||
West
|
||||
"""
|
||||
rev_expanded_nodes: "269"
|
@ -0,0 +1,27 @@
|
||||
# This is a basic depth first search test
|
||||
class: "PacmanSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
# The following specifies the layout to be used
|
||||
layoutName: "mediumMaze"
|
||||
layout: """
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
|
||||
% %% % % %%%%%%% %% %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % %% %% %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
"""
|
||||
|
@ -0,0 +1,2 @@
|
||||
max_points: "3"
|
||||
class: "PassAllTestsQuestion"
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q2/graph_backtrack.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->C 0:C->G"
|
||||
expanded_states: "A B C D"
|
||||
rev_solution: "1:A->C 0:C->G"
|
||||
rev_expanded_states: "A D C B"
|
@ -0,0 +1,32 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "breadthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B
|
||||
^
|
||||
|
|
||||
*A --> C --> G
|
||||
|
|
||||
V
|
||||
D
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This tests whether
|
||||
you extract the sequence of actions correctly even
|
||||
if your search backtracks. If you fail this, your
|
||||
nodes are not correctly tracking the sequences of
|
||||
actions required to reach them.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->D D 4.0
|
||||
C 0:C->G G 8.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q2/graph_bfs_vs_dfs.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->G"
|
||||
expanded_states: "A B"
|
||||
rev_solution: "1:A->G"
|
||||
rev_expanded_states: "A D"
|
@ -0,0 +1,30 @@
|
||||
# Graph where BFS finds the optimal solution but DFS does not
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "breadthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
/-- B
|
||||
| ^
|
||||
| |
|
||||
| *A -->[G]
|
||||
| | ^
|
||||
| V |
|
||||
\-->D ----/
|
||||
|
||||
A is the start state, G is the goal. Arrows
|
||||
mark possible transitions
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->G G 2.0
|
||||
A 2:A->D D 4.0
|
||||
B 0:B->D D 8.0
|
||||
D 0:D->G G 16.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q2/graph_infinite.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "0:A->B 1:B->C 1:C->G"
|
||||
expanded_states: "A B C"
|
||||
rev_solution: "0:A->B 1:B->C 1:C->G"
|
||||
rev_expanded_states: "A B C"
|
@ -0,0 +1,30 @@
|
||||
# Graph where natural action choice leads to an infinite loop
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "breadthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B <--> C
|
||||
^ /|
|
||||
| / |
|
||||
V / V
|
||||
*A<-/ [G]
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
B 0:B->A A 2.0
|
||||
B 1:B->C C 4.0
|
||||
C 0:C->A A 8.0
|
||||
C 1:C->G G 16.0
|
||||
C 2:C->B B 32.0
|
||||
"""
|
||||
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q2/graph_manypaths.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->C 0:C->D 1:D->F 0:F->G"
|
||||
expanded_states: "A B1 C B2 D E1 F E2"
|
||||
rev_solution: "1:A->C 0:C->D 1:D->F 0:F->G"
|
||||
rev_expanded_states: "A B2 C B1 D E2 F E1"
|
@ -0,0 +1,39 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "breadthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B1 E1
|
||||
^ \ ^ \
|
||||
/ V / V
|
||||
*A --> C --> D --> F --> [G]
|
||||
\ ^ \ ^
|
||||
V / V /
|
||||
B2 E2
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This graph has multiple
|
||||
paths to the goal, where nodes with the same state
|
||||
are added to the fringe multiple times before they
|
||||
are expanded.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B1 B1 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->B2 B2 4.0
|
||||
B1 0:B1->C C 8.0
|
||||
B2 0:B2->C C 16.0
|
||||
C 0:C->D D 32.0
|
||||
D 0:D->E1 E1 64.0
|
||||
D 1:D->F F 128.0
|
||||
D 2:D->E2 E2 256.0
|
||||
E1 0:E1->F F 512.0
|
||||
E2 0:E2->F F 1024.0
|
||||
F 0:F->G G 2048.0
|
||||
"""
|
@ -0,0 +1,22 @@
|
||||
# This is the solution file for test_cases/q2/pacman_1.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
# Number of nodes expanded must be with a factor of 1.0 of the numbers below.
|
||||
solution: """
|
||||
West West West West West West West West West South South East East
|
||||
South South South West West West North West West West West South South
|
||||
South East East East East East East East South South South South South
|
||||
South South West West West West West West West West West West West
|
||||
West West West West West West South West West West West West West West
|
||||
West West
|
||||
"""
|
||||
expanded_nodes: "269"
|
||||
rev_solution: """
|
||||
West West West West West West West West West South South East East
|
||||
South South South West West West North West West West West South South
|
||||
South East East East East East East East South South South South South
|
||||
South South West West West West West West West West West West West
|
||||
West West West West West West South West West West West West West West
|
||||
West West
|
||||
"""
|
||||
rev_expanded_nodes: "269"
|
@ -0,0 +1,27 @@
|
||||
# This is a basic breadth first search test
|
||||
class: "PacmanSearchTest"
|
||||
algorithm: "breadthFirstSearch"
|
||||
|
||||
# The following specifies the layout to be used
|
||||
layoutName: "mediumMaze"
|
||||
layout: """
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
|
||||
% %% % % %%%%%%% %% %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % %% %% %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
"""
|
||||
|
@ -0,0 +1,2 @@
|
||||
class: "PassAllTestsQuestion"
|
||||
max_points: "3"
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q3/graph_backtrack.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->C 0:C->G"
|
||||
expanded_states: "A B C D"
|
||||
rev_solution: "1:A->C 0:C->G"
|
||||
rev_expanded_states: "A B C D"
|
@ -0,0 +1,32 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "uniformCostSearch"
|
||||
|
||||
diagram: """
|
||||
B
|
||||
^
|
||||
|
|
||||
*A --> C --> G
|
||||
|
|
||||
V
|
||||
D
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This tests whether
|
||||
you extract the sequence of actions correctly even
|
||||
if your search backtracks. If you fail this, your
|
||||
nodes are not correctly tracking the sequences of
|
||||
actions required to reach them.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->D D 4.0
|
||||
C 0:C->G G 8.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q3/graph_bfs_vs_dfs.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->G"
|
||||
expanded_states: "A B"
|
||||
rev_solution: "1:A->G"
|
||||
rev_expanded_states: "A B"
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue