|
|
|
(*
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
*
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
*)
|
|
|
|
|
|
|
|
(** Multiset - Set with multiplicity for each element *)
|
|
|
|
|
|
|
|
open! NS0
|
|
|
|
include Multiset_intf
|
|
|
|
|
|
|
|
module Make
|
|
|
|
(Mul : MULTIPLICITY) (Elt : sig
|
|
|
|
type t [@@deriving compare, sexp_of]
|
|
|
|
end) =
|
|
|
|
struct
|
|
|
|
module M = Map.Make (Elt)
|
|
|
|
|
|
|
|
type mul = Mul.t
|
|
|
|
type elt = Elt.t
|
|
|
|
type t = Mul.t M.t
|
|
|
|
|
|
|
|
let compare = M.compare Mul.compare
|
|
|
|
let equal = M.equal Mul.equal
|
|
|
|
|
|
|
|
let hash_fold_t hash_fold_elt s m =
|
|
|
|
let hash_fold_mul s i = Hash.fold_int s (Mul.hash i) in
|
|
|
|
let init = Hash.fold_int s (M.length m) in
|
|
|
|
M.fold m init ~f:(fun ~key ~data state ->
|
|
|
|
hash_fold_mul (hash_fold_elt state key) data )
|
|
|
|
|
|
|
|
let sexp_of_t s =
|
|
|
|
List.sexp_of_t
|
|
|
|
(Sexplib.Conv.sexp_of_pair Elt.sexp_of_t Mul.sexp_of_t)
|
|
|
|
(M.to_list s)
|
|
|
|
|
|
|
|
let t_of_sexp elt_of_sexp sexp =
|
|
|
|
M.of_list
|
|
|
|
(List.t_of_sexp
|
|
|
|
(Sexplib.Conv.pair_of_sexp elt_of_sexp Mul.t_of_sexp)
|
|
|
|
sexp)
|
|
|
|
|
|
|
|
let pp ?pre ?suf sep pp_elt fs s =
|
|
|
|
List.pp ?pre ?suf sep pp_elt fs (Iter.to_list (M.to_iter s))
|
|
|
|
|
|
|
|
let empty = M.empty
|
|
|
|
let of_ x i = if Mul.equal Mul.zero i then empty else M.singleton x i
|
|
|
|
let if_nz i = if Mul.equal Mul.zero i then None else Some i
|
|
|
|
|
|
|
|
let add x i m =
|
|
|
|
M.change x m ~f:(function
|
|
|
|
| Some j -> if_nz (Mul.add i j)
|
|
|
|
| None -> if_nz i )
|
|
|
|
|
|
|
|
let remove m x = M.remove m x
|
|
|
|
let find_and_remove = M.find_and_remove
|
|
|
|
let union m n = M.union m n ~f:(fun _ i j -> if_nz (Mul.add i j))
|
|
|
|
|
|
|
|
let diff m n =
|
|
|
|
M.merge m n ~f:(fun _ -> function
|
|
|
|
| `Both (i, j) -> if_nz (Mul.sub i j)
|
|
|
|
| `Left i -> Some i
|
|
|
|
| `Right j -> Some (Mul.neg j) )
|
|
|
|
|
|
|
|
let partition = M.partition
|
|
|
|
let partition_map = M.partition_map
|
|
|
|
|
|
|
|
let map m ~f =
|
|
|
|
let m' = empty in
|
|
|
|
let m, m' =
|
|
|
|
M.fold m (m, m') ~f:(fun ~key:x ~data:i (m, m') ->
|
|
|
|
let x', i' = f x i in
|
|
|
|
if x' == x then
|
|
|
|
if Mul.equal i' i then (m, m') else (M.add ~key:x ~data:i' m, m')
|
|
|
|
else (M.remove x m, add x' i' m') )
|
|
|
|
in
|
|
|
|
union m m'
|
|
|
|
|
|
|
|
let map_counts m ~f = M.map ~f m
|
|
|
|
let mapi_counts m ~f = M.mapi ~f:(fun ~key ~data -> f key data) m
|
|
|
|
|
|
|
|
let flat_map m ~f =
|
|
|
|
let m' = empty in
|
|
|
|
let m, m' =
|
|
|
|
M.fold m (m, m') ~f:(fun ~key:x ~data:i (m, m') ->
|
|
|
|
let d = f x i in
|
|
|
|
match M.only_binding d with
|
|
|
|
| Some (x', i') ->
|
|
|
|
if x' == x then
|
|
|
|
if Mul.equal i' i then (m, m')
|
|
|
|
else (M.add ~key:x ~data:i' m, m')
|
|
|
|
else (M.remove x m, union m' d)
|
|
|
|
| None -> (M.remove x m, union m' d) )
|
|
|
|
in
|
|
|
|
union m m'
|
|
|
|
|
|
|
|
let is_empty = M.is_empty
|
|
|
|
let is_singleton = M.is_singleton
|
|
|
|
let length m = M.length m
|
|
|
|
let count x m = match M.find x m with Some q -> q | None -> Mul.zero
|
|
|
|
let only_elt = M.only_binding
|
|
|
|
let classify = M.classify
|
|
|
|
let choose = M.choose
|
|
|
|
let choose_exn = M.choose_exn
|
|
|
|
let pop = M.pop
|
|
|
|
let min_elt = M.min_binding
|
|
|
|
let pop_min_elt = M.pop_min_binding
|
|
|
|
let to_iter = M.to_iter
|
|
|
|
let iter m ~f = M.iteri ~f:(fun ~key ~data -> f key data) m
|
|
|
|
let exists m ~f = M.existsi ~f:(fun ~key ~data -> f key data) m
|
|
|
|
let for_all m ~f = M.for_alli ~f:(fun ~key ~data -> f key data) m
|
|
|
|
let fold m s ~f = M.fold ~f:(fun ~key ~data -> f key data) m s
|
|
|
|
end
|