You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

679 lines
19 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* A mini-LLVM model, focussing on the semantics of the parts of the IR that
* are relevant for the LLVM -> LLAIR translation, especially exceptions. *)
open HolKernel boolLib bossLib Parse;
open settingsTheory memory_modelTheory;
new_theory "llvm";
numLib.prefer_num ();
(* ----- Abstract syntax ----- *)
(* Only support 1, 8, 32, and 64 bit words for now *)
Datatype:
size = W1 | W8 | W32 | W64
End
Datatype:
ty =
| FunT ty (ty list)
| IntT size
| PtrT ty
| ArrT num ty
| StrT (ty list)
End
Datatype:
label = Lab string
End
Datatype:
reg = Reg string
End
Datatype:
glob_var = Glob_var string
End
Datatype:
fun_name = Fn string
End
Datatype:
const =
| IntC size int
| StrC ((ty # const) list)
| ArrC ((ty # const) list)
| GepC ty const (ty # const) ((ty # const) list)
| GlobalC glob_var
| UndefC
End
Datatype:
arg = Constant const | Variable reg
End
Type targ = ``:ty # arg``
Datatype:
cond = Eq | Ult | Slt
End
Datatype:
instr =
(* Terminators *)
| Ret targ
| Br arg label label
| Invoke reg ty arg (targ list) label label
| Unreachable
(* Non-terminators *)
| Sub reg bool bool ty arg arg
| Extractvalue reg targ (const list)
| Insertvalue reg targ targ (const list)
| Alloca reg ty targ
| Load reg ty targ
| Store targ targ
| Gep reg ty targ (targ list)
| Ptrtoint reg targ ty
| Inttoptr reg targ ty
| Icmp reg cond ty arg arg
| Call reg ty fun_name (targ list)
(* C++ runtime functions *)
| Cxa_allocate_exn reg arg
| Cxa_throw arg arg arg
| Cxa_begin_catch reg arg
| Cxa_end_catch
| Cxa_get_exception_ptr reg arg
End
Datatype:
phi = Phi reg ty ((label option, arg) alist)
End
Datatype:
clause = Catch targ
End
Datatype:
landingpad = Landingpad ty bool (clause list)
End
Datatype:
blockHeader =
| Entry
| Head (phi list) (landingpad option)
End
Datatype:
block = <| h : blockHeader; body : instr list |>
End
Datatype:
def =
<| r : ty;
params : (ty # reg) list;
(* None -> entry block, and Some name -> non-entry block *)
blocks : (label option, block) alist |>
End
Type prog = ``:(fun_name, def) alist``
Definition terminator_def:
(terminator (Ret _) T)
(terminator (Br _ _ _) T)
(terminator (Invoke _ _ _ _ _ _) T)
(terminator Unreachable T)
(terminator _ F)
End
(* ----- Semantic states ----- *)
Datatype:
flat_v =
| W1V word1
| W8V word8
| W32V word32
| W64V word64
| PtrV word64
| UndefV
End
Type v = ``:flat_v reg_v``
Datatype:
pv = <| poison : bool; value : v |>
End
Datatype:
pc = <| f : fun_name; b : label option; i : num |>
End
Datatype:
frame = <| ret : pc; saved_locals : reg |-> pv; result_var : reg; stack_allocs : addr list |>
End
Datatype:
state =
<| ip : pc;
(* Keep the size of the global with its memory address *)
globals : glob_var |-> (num # word64);
locals : reg |-> pv;
stack : frame list;
heap : bool heap |>
End
(* ----- Things about types ----- *)
(* How many bytes a value of the given type occupies *)
Definition sizeof_def:
(sizeof (IntT W1) = 1)
(sizeof (IntT W8) = 1)
(sizeof (IntT W32) = 4)
(sizeof (IntT W64) = 8)
(sizeof (PtrT _) = 8)
(sizeof (ArrT n t) = n * sizeof t)
(sizeof (StrT ts) = sum (map sizeof ts))
Termination
WF_REL_TAC `measure ty_size` >> simp [] >>
Induct >> rw [definition "ty_size_def"] >> simp [] >>
first_x_assum drule >> decide_tac
End
Definition first_class_type_def:
(first_class_type (IntT _) T)
(first_class_type (PtrT _) T)
(first_class_type (ArrT _ t) first_class_type t)
(first_class_type (StrT ts) every first_class_type ts)
(first_class_type _ F)
Termination
WF_REL_TAC `measure ty_size` >>
rw [] >>
Induct_on `ts` >> rw [definition "ty_size_def"] >>
res_tac >> decide_tac
End
Definition indices_ok_def:
(indices_ok _ [] T)
(indices_ok (ArrT n t) (i::indices)
i < n indices_ok t indices)
(indices_ok (StrT ts) (i::indices)
i < length ts indices_ok (el i ts) indices)
(indices_ok _ _ F)
End
Inductive value_type:
(value_type (IntT W1) (FlatV (W1V w1)))
(value_type (IntT W8) (FlatV (W8V w8)))
(value_type (IntT W32) (FlatV (W32V w32)))
(value_type (IntT W64) (FlatV (W64V w64)))
(value_type (PtrT _) (FlatV (PtrV w64)))
(every (value_type t) vs length vs = n first_class_type t
value_type (ArrT n t) (AggV vs))
(list_rel value_type ts vs
value_type (StrT ts) (AggV vs))
End
Definition extract_type_def:
(extract_type t [] = Some t)
(extract_type (ArrT n t) (i::idx) =
if i < n then
extract_type t idx
else
None)
(extract_type (StrT ts) (i::idx) =
if i < length ts then
extract_type (el i ts) idx
else
None)
(extract_type _ _ = None)
End
(* Calculate the offset given by a list of indices *)
Definition get_offset_def:
(get_offset _ [] = Some 0)
(get_offset (ArrT _ t) (i::is) =
case get_offset t is of
| None => None
| Some off => Some (i * sizeof t + off))
(get_offset (StrT ts) (i::is) =
if i < length ts then
case get_offset (el i ts) is of
| None => None
| Some off => Some (sum (map sizeof (take i ts)) + off)
else
None)
(get_offset _ _ = Some 0)
End
(* ----- Semantic transitions ----- *)
Definition w64_cast_def:
(w64_cast w (IntT W1) = Some (FlatV (W1V (w2w w))))
(w64_cast w (IntT W8) = Some (FlatV (W8V (w2w w))))
(w64_cast w (IntT W32) = Some (FlatV (W32V (w2w w))))
(w64_cast w (IntT W64) = Some (FlatV (W64V w)))
(w64_cast _ _ = None)
End
Definition cast_w64_def:
(cast_w64 (FlatV (W1V w)) = Some (w2w w))
(cast_w64 (FlatV (W8V w)) = Some (w2w w))
(cast_w64 (FlatV (W32V w)) = Some (w2w w))
(cast_w64 (FlatV (W64V w)) = Some w)
(cast_w64 _ = None)
End
Definition cast_num_def:
cast_num v = option_map w2n (cast_w64 v)
End
Definition bool_to_v_def:
bool_to_v b = if b then FlatV (W1V 1w) else FlatV (W1V 0w)
End
Definition eval_const_def:
(eval_const g (IntC W1 i) = FlatV (W1V (i2w i)))
(eval_const g (IntC W8 i) = FlatV (W8V (i2w i)))
(eval_const g (IntC W32 i) = FlatV (W32V (i2w i)))
(eval_const g (IntC W64 i) = FlatV (W64V (i2w i)))
(eval_const g (StrC tconsts) = AggV (map (eval_const g) (map snd tconsts)))
(eval_const g (ArrC tconsts) = AggV (map (eval_const g) (map snd tconsts)))
(eval_const g (GepC ty ptr (t, idx) indices) =
case (eval_const g ptr, cast_num (eval_const g idx)) of
| (FlatV (PtrV w), Some n) =>
let ns = map (λ(t,ci). case cast_num (eval_const g ci) of None => 0 | Some n => n) indices in
(case get_offset ty ns of
| None => FlatV UndefV
| Some off => FlatV (PtrV (n2w (w2n w + sizeof ty * n + off))))
| _ => FlatV UndefV)
(eval_const g (GlobalC var) =
case flookup g var of
| None => FlatV (PtrV 0w)
| Some (s,w) => FlatV (PtrV w))
(eval_const g UndefC = FlatV UndefV)
Termination
WF_REL_TAC `measure (const_size o snd)` >> rw [listTheory.MEM_MAP] >>
TRY
(TRY (PairCases_on `y`) >> simp [] >>
Induct_on `tconsts` >> rw [] >> rw [definition "const_size_def"] >>
res_tac >> fs [] >> NO_TAC) >>
Induct_on `indices` >> rw [] >> rw [definition "const_size_def"] >>
fs []
End
Definition eval_def:
(eval s (Variable v) =
case flookup s.locals v of
| None => <| poison := F; value := FlatV (W1V 0w) |>
| Some v => v)
(eval s (Constant c) = <| poison := F; value := eval_const s.globals c |>)
End
Definition v2n_def:
(v2n (FlatV (W1V b)) = Some (if T then 1 else 0))
(v2n (FlatV (W8V w8)) = Some (w2n w8))
(v2n (FlatV (W32V w32)) = Some (w2n w32))
(v2n (FlatV (W64V w64)) = Some (w2n w64))
(v2n _ = None)
End
Definition type_to_shape_def:
(type_to_shape (IntT s) = Flat (sizeof (IntT s)) (IntT s))
(type_to_shape (PtrT t) = Flat (sizeof (PtrT t)) (PtrT t))
(type_to_shape (ArrT n t) = Array (type_to_shape t) n)
(type_to_shape (StrT ts) = Tuple (map type_to_shape ts))
Termination
WF_REL_TAC `measure ty_size` >> rw [] >>
Induct_on `ts` >> rw [definition "ty_size_def"] >>
res_tac >> simp []
End
Definition convert_value_def:
(convert_value (IntT W1) w = W1V (w2w w))
(convert_value (IntT W8) w = W8V (w2w w))
(convert_value (IntT W32) w = W32V (w2w w))
(convert_value (IntT W64) w = W64V w)
(convert_value (PtrT _) w = PtrV w)
End
Definition bytes_to_llvm_value_def:
bytes_to_llvm_value t bs =
(bytes_to_value (λn t w. convert_value t w) (type_to_shape t) bs)
End
Definition unconvert_value_def:
(unconvert_value (W1V w) = (1, w2w w))
(unconvert_value (W8V w) = (1, w2w w))
(unconvert_value (W32V w) = (4, w2w w))
(unconvert_value (W64V w) = (8, w))
(unconvert_value (PtrV w) = (8, w))
End
Definition llvm_value_to_bytes_def:
llvm_value_to_bytes v =
value_to_bytes unconvert_value v
End
Definition do_sub_def:
do_sub (nuw:bool) (nsw:bool) (v1:pv) (v2:pv) =
let (diff, u_overflow, s_overflow) =
case (v1.value, v2.value) of
| (FlatV (W1V w1), FlatV (W1V w2)) => (FlatV o W1V ## I) (add_with_carry (w1, ¬w2, T))
| (FlatV (W8V w1), FlatV (W8V w2)) => (FlatV o W8V ## I) (add_with_carry (w1, ¬w2, T))
| (FlatV (W32V w1), FlatV (W32V w2)) => (FlatV o W32V ## I) (add_with_carry (w1, ¬w2, T))
| (FlatV (W64V w1), FlatV (W64V w2)) => (FlatV o W64V ## I) (add_with_carry (w1, ¬w2, T))
in
let p = ((nuw u_overflow) (nsw s_overflow) v1.poison v2.poison) in
<| poison := p; value := diff |>
End
Definition get_comp_def:
(get_comp Eq = $=)
(get_comp Slt = $<)
(get_comp Ult = $<+)
End
Definition do_icmp_def:
do_icmp c v1 v2 =
<| poison := (v1.poison v2.poison);
value := bool_to_v (
case (v1.value, v2.value) of
| (FlatV (W1V w1), FlatV (W1V w2)) => (get_comp c) w1 w2
| (FlatV (W8V w1), FlatV (W8V w2)) => (get_comp c) w1 w2
| (FlatV (W32V w1), FlatV (W32V w2)) => (get_comp c) w1 w2
| (FlatV (W64V w1), FlatV (W64V w2)) => (get_comp c) w1 w2
| (FlatV (PtrV w1), FlatV (PtrV w2)) => (get_comp c) w1 w2) |>
End
Definition do_phi_def:
do_phi from_l s (Phi id _ entries) =
option_map (λarg. (id, eval s arg)) (alookup entries from_l)
End
Definition extract_value_def:
(extract_value v [] = Some v)
(extract_value (AggV vs) (i::indices) =
if i < length vs then
extract_value (el i vs) indices
else
None)
(extract_value _ _ = None)
End
Definition insert_value_def:
(insert_value _ v [] = Some v)
(insert_value (AggV vs) v (i::indices) =
if i < length vs then
case insert_value (el i vs) v indices of
| None => None
| Some v => Some (AggV (list_update v i vs))
else
None)
(insert_value _ _ _ = None)
End
Definition update_result_def:
update_result x v s = s with locals := s.locals |+ (x, v)
End
Definition inc_pc_def:
inc_pc s = s with ip := (s.ip with i := s.ip.i + 1)
End
(* NB, the semantics tracks the poison values, but not much thought has been put
* into getting it exactly right, so we don't have much confidence that it is
* exactly right. We also are currently ignoring the undefined value. *)
Inductive step_instr:
(s.stack = fr::st
deallocate fr.stack_allocs s.heap = new_h
step_instr prog s
(Ret (t, a))
(update_result fr.result_var (eval s a)
<| ip := fr.ret;
globals := s.globals;
locals := fr.saved_locals;
stack := st;
heap := new_h |>))
(* Do the phi assignments in parallel. The manual says "For the purposes of the
* SSA form, the use of each incoming value is deemed to occur on the edge from
* the corresponding predecessor block to the current block (but after any
* definition of an 'invoke' instruction's return value on the same edge)".
* So treat these two as equivalent
* %r1 = phi [0, %l]
* %r2 = phi [%r1, %l]
* and
* %r2 = phi [%r1, %l]
* %r1 = phi [0, %l]
*)
(eval s a = <| poison := p; value := FlatV (W1V tf) |>
l = Some (if tf = 1w then l1 else l2)
alookup prog s.ip.f = Some d
alookup d.blocks l = Some <| h := Head phis None; body := b |>
map (do_phi l s) phis = map Some updates
step_instr prog s
(Br a l1 l2)
(s with <| ip := <| f := s.ip.f; b := l; i := 0 |>;
locals := s.locals |++ updates |>))
(* TODO *)
(step_instr prog s (Invoke r t a args l1 l2) s)
(step_instr prog s
(Sub r nuw nsw t a1 a2)
(inc_pc (update_result r (do_sub nuw nsw (eval s a1) (eval s a2)) s)))
(eval s a = v
map (λci. cast_num (eval_const s.globals ci)) const_indices = map Some ns
extract_value v.value ns = Some result
step_instr prog s
(Extractvalue r (t, a) const_indices)
(inc_pc (update_result r
<| poison := v.poison; value := result |> s)))
(eval s a1 = v1
eval s a2 = v2
map (λci. cast_num (eval_const s.globals ci)) const_indices = map Some ns
insert_value v1.value v2.value ns = Some result
step_instr prog s
(Insertvalue r (t1, a1) (t2, a2) const_indices)
(inc_pc (update_result r
<| poison := (v1.poison v2.poison); value := result |> s)))
(eval s a1 = v
v2n v.value = Some n
allocate s.heap (n * sizeof t) v.poison (n2, new_h)
step_instr prog s
(Alloca r t (t1, a1))
(inc_pc (update_result r <| poison := v.poison; value := FlatV (PtrV (n2w n2)) |>
(s with heap := new_h))))
(eval s a1 = <| poison := p1; value := FlatV (PtrV w) |>
interval = Interval freeable (w2n w) (w2n w + sizeof t)
is_allocated interval s.heap
pbytes = get_bytes s.heap interval
step_instr prog s
(Load r t (t1, a1))
(inc_pc (update_result r <| poison := (T set (map fst pbytes));
value := fst (bytes_to_llvm_value t (map snd pbytes)) |>
s)))
(eval s a2 = <| poison := p2; value := FlatV (PtrV w) |>
interval = Interval freeable (w2n w) (w2n w + sizeof t)
is_allocated interval s.heap
bytes = llvm_value_to_bytes (eval s a1).value
length bytes = sizeof t
step_instr prog s
(Store (t1, a1) (t2, a2))
(inc_pc (s with heap := set_bytes p2 bytes (w2n w) s.heap)))
(map (eval s o snd) tindices = i1::indices
(eval s a1).value = FlatV (PtrV w1)
cast_num i1.value = Some n
map (λx. cast_num x.value) indices = map Some ns
get_offset t1 ns = Some off
step_instr prog s
(Gep r t ((PtrT t1), a1) tindices)
(inc_pc (update_result r
<| poison := (v1.poison i1.poison exists (λv. v.poison) indices);
value := FlatV (PtrV (n2w (w2n w1 + sizeof t1 * n + off))) |>
s)))
(eval s a1 = v1
v1.value = FlatV (PtrV w)
w64_cast w t = Some int_v
step_instr prog s
(Ptrtoint r (t1, a1) t)
(inc_pc (update_result r <| poison := v1.poison; value := int_v |> s)))
(eval s a1 = v1
cast_w64 v1.value = Some w
step_instr prog s
(Inttoptr r (t1, a1) t)
(inc_pc (update_result r <| poison := v1.poison; value := FlatV (PtrV w) |> s)))
(step_instr prog s
(Icmp r c t a1 a2)
(inc_pc (update_result r (do_icmp c (eval s a1) (eval s a2)) s)))
(alookup prog fname = Some d
step_instr prog s
(Call r t fname targs)
<| ip := <| f := fname; b := None; i := 0 |>;
locals := alist_to_fmap (zip (map snd d.params, map (eval s o snd) targs));
globals := s.globals;
stack :=
<| ret := s.ip with i := s.ip.i + 1;
saved_locals := s.locals;
result_var := r;
stack_allocs := [] |> :: s.stack;
heap := s.heap |>)
(* TODO *)
(step_instr prog s (Cxa_allocate_exn r a) s)
(* TODO *)
(step_instr prog s (Cxa_throw a1 a2 a3) s)
(* TODO *)
(step_instr prog s (Cxa_begin_catch r a) s)
(* TODO *)
(step_instr prog s (Cxa_end_catch) s)
(* TODO *)
(step_instr prog s (Cxa_get_exception_ptr r a) s)
End
Inductive next_instr:
alookup p s.ip.f = Some d
alookup d.blocks s.ip.b = Some b
s.ip.i < length b.body
next_instr p s (el s.ip.i b.body)
End
Inductive step:
next_instr p s i
step_instr p s i s'
step p s s'
End
(* ----- Invariants on state ----- *)
(* All global variables are allocated in non-freeable memory *)
Definition globals_ok_def:
globals_ok s
∀g n w.
flookup s.globals g = Some (n, w)
is_allocated (Interval F (w2n w) (w2n w + n)) s.heap
End
(* Instruction pointer points to an instruction *)
Definition ip_ok_def:
ip_ok p ip
∃dec block. alookup p ip.f = Some dec alookup dec.blocks ip.b = Some block ip.i < length block.body
End
Definition prog_ok_def:
prog_ok p
((* All blocks end with terminators *)
∀fname dec bname block.
alookup p fname = Some dec
alookup dec.blocks bname = Some block
block.body [] terminator (last block.body))
((* All functions have an entry block *)
∀fname dec.
alookup p fname = Some dec ∃block. alookup dec.blocks None = Some block)
(* There is a main function *)
∃dec. alookup p (Fn "main") = Some dec
End
(* All call frames have a good return address, and the stack allocations of the
* frame are all in freeable memory *)
Definition frame_ok_def:
frame_ok p s f
ip_ok p f.ret
every (λn. ∃start stop. n = A start Interval T start stop s.heap.allocations) f.stack_allocs
End
(* The frames are all of, and no two stack allocations have the same address *)
Definition stack_ok_def:
stack_ok p s
every (frame_ok p s) s.stack
all_distinct (flat (map (λf. f.stack_allocs) s.stack))
End
Definition state_invariant_def:
state_invariant p s
ip_ok p s.ip heap_ok s.heap globals_ok s stack_ok p s
End
(* ----- Initial state ----- *)
(* The initial state contains allocations for the initialised global variables *)
Definition is_init_state_def:
is_init_state s (global_init : glob_var |-> ty # v)
s.ip.f = Fn "main"
s.ip.b = None
s.ip.i = 0
s.locals = fempty
s.stack = []
globals_ok s
heap_ok s.heap
fdom s.globals = fdom global_init
s.heap.valid_addresses = { A n | n < dimword (:64) }
(* The initial allocations for globals are not freeable *)
s.heap.allocations { Interval F start stop | T }
(* The heap starts with the initial values of the globals written to their
* addresses *)
∀g w t v n.
flookup s.globals g = Some (n, w) flookup global_init g = Some (t,v)
∃bytes.
get_bytes s.heap (Interval F (w2n w) (w2n w + sizeof t)) = map (λb. (F,b)) bytes
bytes_to_llvm_value t bytes = (v, [])
End
export_theory();