You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

454 lines
16 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Properties of the mini-LLVM model *)
open HolKernel boolLib bossLib Parse;
open pairTheory listTheory rich_listTheory arithmeticTheory wordsTheory;
open pred_setTheory finite_mapTheory;
open logrootTheory numposrepTheory;
open settingsTheory miscTheory llvmTheory memory_modelTheory;
new_theory "llvm_prop";
numLib.prefer_num();
(* ----- Theorems about converting between values and byte lists ----- *)
Theorem value_type_is_fc:
∀t v. value_type t v first_class_type t
Proof
ho_match_mp_tac value_type_ind >> rw [first_class_type_def] >>
fs [LIST_REL_EL_EQN, EVERY_EL]
QED
Theorem sizeof_type_to_shape:
∀t. first_class_type t sizeof (type_to_shape t) = sizeof t
Proof
recInduct type_to_shape_ind >>
rw [type_to_shape_def, memory_modelTheory.sizeof_def, llvmTheory.sizeof_def,
first_class_type_def, EVERY_MEM] >>
qid_spec_tac `vs` >> Induct_on `ts` >> rw [] >> fs []
QED
Theorem value_type_to_shape:
∀t v.
value_type t v
∀s.
value_shape (\n t x. n = fst (unconvert_value x) value_type t (FlatV x)) (type_to_shape t) v
Proof
ho_match_mp_tac value_type_ind >>
rw [memory_modelTheory.sizeof_def, llvmTheory.sizeof_def, type_to_shape_def,
unconvert_value_def, value_shape_def] >>
fs [value_shapes_list_rel, LIST_REL_CONJ, ETA_THM, EVERY2_MAP] >>
metis_tac [value_type_rules]
QED
Theorem llvm_v2b_size:
∀t v. value_type t v length (llvm_value_to_bytes v) = sizeof t
Proof
rw [llvm_value_to_bytes_def] >>
drule value_type_to_shape >> rw [] >>
drule value_type_is_fc >> rw [] >>
drule sizeof_type_to_shape >>
disch_then (mp_tac o GSYM) >> rw [] >>
irule v2b_size >> rw [] >>
qmatch_assum_abbrev_tac `value_shape f _ _` >>
qexists_tac `f` >> rw [] >>
unabbrev_all_tac >> fs []
QED
Theorem b2llvm_v_size:
∀t bs. first_class_type t sizeof t length bs
∃v. bytes_to_llvm_value t bs = (v, drop (sizeof t) bs)
Proof
rw [bytes_to_llvm_value_def] >>
drule sizeof_type_to_shape >> disch_then (mp_tac o GSYM) >> rw [] >>
fs [PAIR_MAP] >>
metis_tac [SND, b2v_size]
QED
Theorem b2llvm_v_smaller:
∀t bs. first_class_type t sizeof t length bs
length (snd (bytes_to_llvm_value t bs)) = length bs - sizeof t
Proof
rw [bytes_to_llvm_value_def] >>
metis_tac [b2v_smaller, sizeof_type_to_shape]
QED
Theorem b2llvm_v_append:
∀t bs bs'. first_class_type t sizeof t length bs
bytes_to_llvm_value t (bs ++ bs') = (I ## (λx. x ++ bs')) (bytes_to_llvm_value t bs)
Proof
rw [bytes_to_llvm_value_def] >>
drule sizeof_type_to_shape >> disch_then (mp_tac o GSYM) >> rw [] >> fs [] >>
rw [PAIR_MAP, b2v_append]
QED
Theorem b2v_llvm_v2b:
∀v t bs. value_type t v bytes_to_llvm_value t (llvm_value_to_bytes v ++ bs) = (v, bs)
Proof
rw [bytes_to_llvm_value_def, llvm_value_to_bytes_def] >>
drule value_type_to_shape >> rw [] >>
qmatch_assum_abbrev_tac `value_shape f _ _` >>
irule b2v_v2b >>
qexists_tac `f` >> rw [] >>
unabbrev_all_tac >> fs [] >>
5 years ago
fs [unconvert_value_def, convert_value_def, value_type_cases, pointer_size_def] >>
wordsLib.WORD_DECIDE_TAC
QED
(* ----- Theorems about insert/extract value and get_offset ----- *)
Theorem can_extract:
∀v indices t.
indices_ok t indices value_type t v extract_value v indices None
Proof
recInduct extract_value_ind >> rw [extract_value_def]
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [LIST_REL_LENGTH])
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [EVERY_EL, LIST_REL_EL_EQN]) >>
Cases_on `t` >> fs [indices_ok_def] >> simp [value_type_cases]
QED
Theorem can_insert:
∀v v2 indices t.
indices_ok t indices value_type t v insert_value v v2 indices None
Proof
recInduct insert_value_ind >> rw [insert_value_def]
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [LIST_REL_LENGTH])
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
CASE_TAC >> fs [] >> rfs [] >>
metis_tac [EVERY_EL, LIST_REL_EL_EQN]) >>
Cases_on `t` >> fs [indices_ok_def] >> simp [value_type_cases]
QED
Theorem extract_insertvalue:
∀v1 v2 indices v3.
insert_value v1 v2 indices = Some v3
extract_value v3 indices = Some v2
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
pop_assum mp_tac >> CASE_TAC >> fs [] >> rfs [] >>
rw [] >> simp [extract_value_def, EL_LUPDATE]
QED
Theorem extract_insertvalue_other:
∀v1 v2 indices1 indices2 v3.
insert_value v1 v2 indices1 = Some v3
¬(indices1 indices2) ¬(indices2 indices1)
extract_value v3 indices2 = extract_value v1 indices2
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
qpat_x_assum `_ = SOME _` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
qpat_x_assum `¬case _ of [] => F | h::t => P h t` mp_tac >>
CASE_TAC >> fs [] >> rename1 `idx::is` >>
fs [extract_value_def] >> rw [EL_LUPDATE]
QED
Theorem insert_extractvalue:
∀v1 indices v2.
extract_value v1 indices = Some v2
insert_value v1 v2 indices = Some v1
Proof
recInduct extract_value_ind >> rw [insert_value_def, extract_value_def] >> fs [] >>
rw [LUPDATE_SAME]
QED
Definition indices_in_range_def:
(indices_in_range t [] T)
(indices_in_range (ArrT n t) (i::is)
i < n indices_in_range t is)
(indices_in_range (StrT ts) (i::is)
i < length ts indices_in_range (el i ts) is)
(indices_in_range _ _ F)
End
(* The strict inequality does not hold because of 0 length arrays *)
Theorem offset_size_leq:
∀t indices n.
indices_in_range t indices get_offset t indices = Some n
n sizeof t
Proof
recInduct get_offset_ind >> rw [get_offset_def, llvmTheory.sizeof_def, indices_in_range_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >> rw [] >> rfs []
>- (
`x + i * sizeof t (i + 1) * sizeof t` by decide_tac >>
`i + 1 v1` by decide_tac >>
metis_tac [LESS_MONO_MULT, LESS_EQ_TRANS]) >>
rw [MAP_TAKE, ETA_THM] >>
`take (Suc i) (map sizeof ts) = take i (map sizeof ts) ++ [sizeof (el i ts)]`
by rw [GSYM SNOC_EL_TAKE, EL_MAP] >>
`take (Suc i) (map sizeof ts) (map sizeof ts)` by rw [take_is_prefix] >>
drule sum_prefix >> rw [SUM_APPEND]
QED
Theorem extract_type_fc:
∀t is t'. extract_type t is = Some t' first_class_type t first_class_type t'
Proof
recInduct extract_type_ind >> rw [extract_type_def, first_class_type_def] >>
rw [] >> fs [] >> fs [EVERY_EL]
QED
Theorem extract_offset_size:
∀t indices n t'.
extract_type t indices = Some t'
get_offset t indices = Some n
sizeof t' sizeof t - n
Proof
recInduct get_offset_ind >> rw [get_offset_def, extract_type_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [llvmTheory.sizeof_def] >> rfs [] >> rw [ETA_THM]
>- (
`sizeof t (v1 i) * sizeof t` suffices_by decide_tac >>
`1 v1 - i` by decide_tac >>
rw []) >>
rw [MAP_TAKE] >>
`sizeof (el i ts) sum (map sizeof ts) (sum (take i (map sizeof ts)))`
suffices_by decide_tac >>
qpat_x_assum `_ < _` mp_tac >> rpt (pop_assum kall_tac) >> qid_spec_tac `i` >>
Induct_on `ts` >> rw [TAKE_def, EL_CONS, PRE_SUB1]
QED
Theorem llvm_value_to_bytes_agg:
∀vs. llvm_value_to_bytes (AggV vs) = flat (map llvm_value_to_bytes vs)
Proof
Induct >> rw [] >> fs [llvm_value_to_bytes_def, value_to_bytes_def]
QED
Theorem read_from_offset_extract:
∀t indices n v t'.
indices_in_range t indices
get_offset t indices = Some n
value_type t v
extract_type t indices = Some t'
extract_value v indices = Some (fst (bytes_to_llvm_value t' (drop n (llvm_value_to_bytes v))))
Proof
recInduct get_offset_ind >>
rw [extract_value_def, get_offset_def, extract_type_def, indices_in_range_def] >>
simp [DROP_0]
>- metis_tac [APPEND_NIL, FST, b2v_llvm_v2b] >>
qpat_x_assum `value_type _ _` mp_tac >>
simp [Once value_type_cases] >> rw [] >> simp [extract_value_def] >>
qpat_x_assum `_ = Some n` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
simp [llvm_value_to_bytes_agg]
>- (
`value_type t (el i vs)` by metis_tac [EVERY_EL] >>
first_x_assum drule >>
rw [] >> simp [GSYM DROP_DROP_T, ETA_THM] >>
`i * sizeof t = length (flat (take i (map llvm_value_to_bytes vs)))`
by (
simp [LENGTH_FLAT, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`map (λx. length (llvm_value_to_bytes x)) vs = replicate (length vs) (sizeof t)`
by (
qpat_x_assum `every _ _` mp_tac >> rpt (pop_assum kall_tac) >>
Induct_on `vs` >> rw [llvm_v2b_size]) >>
rw [take_replicate, MIN_DEF]) >>
rw [GSYM flat_drop, GSYM MAP_DROP] >>
drule DROP_CONS_EL >> simp [DROP_APPEND] >> disch_then kall_tac >>
`first_class_type t'` by metis_tac [value_type_is_fc, extract_type_fc] >>
`sizeof t' length (drop x (llvm_value_to_bytes (el i vs)))`
by (simp [LENGTH_DROP] >> drule llvm_v2b_size >> rw [] >> metis_tac [extract_offset_size]) >>
simp [b2llvm_v_append])
>- metis_tac [LIST_REL_LENGTH]
>- (
`value_type (el i ts) (el i vs)` by metis_tac [LIST_REL_EL_EQN] >>
first_x_assum drule >>
rw [] >> simp [GSYM DROP_DROP_T, ETA_THM] >>
`sum (map sizeof (take i ts)) = length (flat (take i (map llvm_value_to_bytes vs)))`
by (
simp [LENGTH_FLAT, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`map sizeof ts = map (\x. length (llvm_value_to_bytes x)) vs`
by (
qpat_x_assum `list_rel _ _ _` mp_tac >> rpt (pop_assum kall_tac) >>
qid_spec_tac `ts` >>
Induct_on `vs` >> rw [] >> rw [llvm_v2b_size]) >>
rw []) >>
rw [GSYM flat_drop, GSYM MAP_DROP] >>
`i < length vs` by metis_tac [LIST_REL_LENGTH] >>
drule DROP_CONS_EL >> simp [DROP_APPEND] >> disch_then kall_tac >>
`first_class_type t'` by metis_tac [value_type_is_fc, extract_type_fc] >>
`sizeof t' length (drop x (llvm_value_to_bytes (el i vs)))`
by (simp [LENGTH_DROP] >> drule llvm_v2b_size >> rw [] >> metis_tac [extract_offset_size]) >>
simp [b2llvm_v_append])
QED
(* ----- Theorems about the step function ----- *)
Theorem inc_pc_invariant:
∀p s i. prog_ok p next_instr p s i ¬terminator i state_invariant p s state_invariant p (inc_pc s)
Proof
rw [state_invariant_def, inc_pc_def, allocations_ok_def, globals_ok_def,
stack_ok_def, frame_ok_def, heap_ok_def, EVERY_EL, ip_ok_def]
>- (
qexists_tac `dec` >> qexists_tac `block'` >> rw [] >>
fs [prog_ok_def, next_instr_cases] >> res_tac >> rw [] >>
`s.ip.i length block'.body - 1` suffices_by decide_tac >>
CCONTR_TAC >> fs [] >> rfs [LAST_EL, PRE_SUB1]) >>
metis_tac []
QED
Theorem next_instr_update:
∀p s i r v. next_instr p (update_result r v s) i <=> next_instr p s i
Proof
rw [next_instr_cases, update_result_def]
QED
Theorem update_invariant:
∀r v s. state_invariant p (update_result r v s) state_invariant p s
Proof
rw [update_result_def, state_invariant_def, ip_ok_def, allocations_ok_def,
globals_ok_def, stack_ok_def, heap_ok_def, EVERY_EL, frame_ok_def]
QED
Theorem allocate_invariant:
∀p s1 v1 t v2 h2.
state_invariant p s1 allocate s1.heap v1 t (v2,h2) state_invariant p (s1 with heap := h2)
Proof
rw [state_invariant_def, ip_ok_def, globals_ok_def, stack_ok_def]
>- metis_tac [allocate_heap_ok]
>- (fs [is_allocated_def] >> metis_tac [allocate_unchanged, SUBSET_DEF])
>- (
fs [EVERY_EL, frame_ok_def, allocate_unchanged] >> rw [] >>
metis_tac [allocate_unchanged, SUBSET_DEF])
QED
Theorem set_bytes_invariant:
∀s poison bytes n prog b.
state_invariant prog s is_allocated (Interval b n (n + length bytes)) s.heap
state_invariant prog (s with heap := set_bytes poison bytes n s.heap)
Proof
rw [state_invariant_def]
>- metis_tac [set_bytes_heap_ok]
>- (fs [globals_ok_def, is_allocated_def, set_bytes_unchanged] >> metis_tac [])
>- (fs [stack_ok_def, EVERY_EL, frame_ok_def, set_bytes_unchanged])
QED
Theorem step_instr_invariant:
∀i s2.
step_instr p s1 i s2 prog_ok p next_instr p s1 i state_invariant p s1
state_invariant p s2
Proof
ho_match_mp_tac step_instr_ind >> rw []
>- ( (* Ret *)
rw [update_invariant] >> fs [state_invariant_def] >> rw []
>- (
fs [stack_ok_def] >> rfs [EVERY_EL, frame_ok_def] >>
first_x_assum (qspec_then `0` mp_tac) >> simp [])
>- (
fs [heap_ok_def, deallocate_def, allocations_ok_def] >> rw []
>- metis_tac []
>- metis_tac [] >>
fs [deallocate_def, heap_ok_def] >> rw [flookup_fdiff] >>
eq_tac >> rw []
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE]
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE] >>
fs [allocations_ok_def, stack_ok_def, EXTENSION] >> metis_tac [])
>- (
fs [globals_ok_def, deallocate_def] >> rw [] >>
first_x_assum drule >> rw [] >> fs [is_allocated_def] >>
qexists_tac `b2` >> rw [] >> CCONTR_TAC >> fs [interval_freeable_def])
>- (
fs [stack_ok_def, EVERY_MEM, frame_ok_def, deallocate_def] >> rfs [] >>
rw []
>- (
res_tac >> rw [] >> qexists_tac `stop` >> rw [] >>
fs [ALL_DISTINCT_APPEND, MEM_FLAT, MEM_MAP] >>
metis_tac [])
>- (
fs [ALL_DISTINCT_APPEND])))
>- ( (* Br *)
fs [state_invariant_def] >> rw []
>- (
rw [ip_ok_def] >> fs [prog_ok_def, NOT_NIL_EQ_LENGTH_NOT_0] >>
qpat_x_assum `alookup _ (Fn "main") = _` kall_tac >>
last_x_assum drule >> disch_then drule >> fs [])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac []))
>- ( (* Br *)
fs [state_invariant_def] >> rw []
>- (
rw [ip_ok_def] >> fs [prog_ok_def, NOT_NIL_EQ_LENGTH_NOT_0] >>
qpat_x_assum `alookup _ (Fn "main") = _` kall_tac >>
last_x_assum drule >> disch_then drule >> fs [])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac []))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]>>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Allocation *)
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]
>- metis_tac [allocate_invariant]
>- (fs [next_instr_cases, allocate_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
fs [next_instr_cases] >>
metis_tac [terminator_def])
>- ( (* Store *)
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]
>- (irule set_bytes_invariant >> rw [] >> metis_tac [])
>- (fs [next_instr_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Call *)
rw [state_invariant_def]
>- (fs [prog_ok_def, ip_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- (fs [state_invariant_def, heap_ok_def] >> metis_tac [])
>- (fs [state_invariant_def, globals_ok_def] >> metis_tac [])
>- (
fs [state_invariant_def, stack_ok_def] >> rw []
>- (
rw [frame_ok_def] >> fs [ip_ok_def, prog_ok_def] >>
last_x_assum drule >> disch_then drule >> rw [] >>
CCONTR_TAC >> fs [] >> rfs [LAST_EL] >>
Cases_on `length block'.body = s1.ip.i + 1` >> fs [PRE_SUB1] >>
fs [next_instr_cases] >>
metis_tac [terminator_def])
>- (fs [EVERY_MEM, frame_ok_def] >> metis_tac [])))
QED
(* ----- Initial state is ok ----- *)
Theorem init_invariant:
∀p s init. prog_ok p is_init_state s init state_invariant p s
Proof
rw [is_init_state_def, state_invariant_def]
>- (rw [ip_ok_def] >> fs [prog_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- rw [stack_ok_def]
QED
export_theory ();