You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2182 lines
77 KiB

(*
* Copyright (c) 2009-2013, Monoidics ltd.
* Copyright (c) 2013-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
module Hashtbl = Caml.Hashtbl
(** Operators for the abstract domain. In particular, join and meet. *)
module L = Logging
let ( ++ ) = IntLit.add
let ( -- ) = IntLit.sub
(** {2 Utility functions for ids} *)
let can_rename id = Ident.is_primed id || Ident.is_footprint id
(** {2 Utility functions for sigma} *)
let equal_sigma sigma1 sigma2 =
let rec f sigma1_rest sigma2_rest =
match (sigma1_rest, sigma2_rest) with
| [], [] ->
()
| [], _ :: _ | _ :: _, [] ->
L.d_strln "failure reason 1" ; raise Sil.JoinFail
| hpred1 :: sigma1_rest', hpred2 :: sigma2_rest' ->
if Sil.equal_hpred hpred1 hpred2 then f sigma1_rest' sigma2_rest'
else ( L.d_strln "failure reason 2" ; raise Sil.JoinFail )
in
let sigma1_sorted = List.sort ~compare:Sil.compare_hpred sigma1 in
let sigma2_sorted = List.sort ~compare:Sil.compare_hpred sigma2 in
f sigma1_sorted sigma2_sorted
let sigma_get_start_lexps_sort sigma =
let exp_compare_neg e1 e2 = -Exp.compare e1 e2 in
let filter e = Exp.free_vars e |> Sequence.for_all ~f:Ident.is_normal in
let lexps = Sil.hpred_list_get_lexps filter sigma in
List.sort ~compare:exp_compare_neg lexps
(** {2 Utility functions for side} *)
type side = Lhs | Rhs
let select side e1 e2 = match side with Lhs -> e1 | Rhs -> e2
let opposite side = match side with Lhs -> Rhs | Rhs -> Lhs
let do_side side f e1 e2 = match side with Lhs -> f e1 e2 | Rhs -> f e2 e1
(** {2 Module for maintaining information about noninjectivity during join} *)
module NonInj : sig
val init : unit -> unit
val final : unit -> unit
val add : side -> Exp.t -> Exp.t -> unit
val check : side -> Exp.t list -> bool
end = struct
(* mappings from primed or footprint var exps to primed or footprint var exps *)
let equiv_tbl1 = Hashtbl.create 32
let equiv_tbl2 = Hashtbl.create 32
(* mappings from primed or footprint var exps to normal var, lvar or const exps *)
let const_tbl1 = Hashtbl.create 32
let const_tbl2 = Hashtbl.create 32
let reset () =
Hashtbl.clear equiv_tbl1 ;
Hashtbl.clear equiv_tbl2 ;
Hashtbl.clear const_tbl1 ;
Hashtbl.clear const_tbl2
let init () = reset ()
let final () = reset ()
let lookup' tbl e default =
match e with
| Exp.Var _ -> (
try Hashtbl.find tbl e with Caml.Not_found -> Hashtbl.replace tbl e default ; default )
| _ ->
assert false
let lookup_equiv' tbl e = lookup' tbl e e
let lookup_const' tbl e = lookup' tbl e Exp.Set.empty
let rec find' tbl e =
let e' = lookup_equiv' tbl e in
match e' with
| Exp.Var _ ->
if Exp.equal e e' then e
else
let root = find' tbl e' in
Hashtbl.replace tbl e root ; root
| _ ->
assert false
let union' tbl const_tbl e1 e2 =
let r1 = find' tbl e1 in
let r2 = find' tbl e2 in
let new_r, old_r = match Exp.compare r1 r2 with i when i <= 0 -> (r1, r2) | _ -> (r2, r1) in
let new_c = lookup_const' const_tbl new_r in
let old_c = lookup_const' const_tbl old_r in
let res_c = Exp.Set.union new_c old_c in
if Exp.Set.cardinal res_c > 1 then ( L.d_strln "failure reason 3" ; raise Sil.JoinFail ) ;
Hashtbl.replace tbl old_r new_r ;
Hashtbl.replace const_tbl new_r res_c
let replace_const' tbl const_tbl e c =
let r = find' tbl e in
let set = Exp.Set.add c (lookup_const' const_tbl r) in
if Exp.Set.cardinal set > 1 then ( L.d_strln "failure reason 4" ; raise Sil.JoinFail ) ;
Hashtbl.replace const_tbl r set
let add side e e' =
let tbl, const_tbl =
match side with Lhs -> (equiv_tbl1, const_tbl1) | Rhs -> (equiv_tbl2, const_tbl2)
in
match (e, e') with
| Exp.Var id, Exp.Var id' -> (
match (can_rename id, can_rename id') with
| true, true ->
union' tbl const_tbl e e'
| true, false ->
replace_const' tbl const_tbl e e'
| false, true ->
replace_const' tbl const_tbl e' e
| _ ->
L.d_strln "failure reason 5" ; raise Sil.JoinFail )
| Exp.Var id, Exp.Const _ | Exp.Var id, Exp.Lvar _ ->
if can_rename id then replace_const' tbl const_tbl e e'
else ( L.d_strln "failure reason 6" ; raise Sil.JoinFail )
| Exp.Const _, Exp.Var id' | Exp.Lvar _, Exp.Var id' ->
if can_rename id' then replace_const' tbl const_tbl e' e
else ( L.d_strln "failure reason 7" ; raise Sil.JoinFail )
| _ ->
if not (Exp.equal e e') then ( L.d_strln "failure reason 8" ; raise Sil.JoinFail ) else ()
let check side es =
let f = function Exp.Var id -> can_rename id | _ -> false in
let vars, nonvars = List.partition_tf ~f es in
let tbl, const_tbl =
match side with Lhs -> (equiv_tbl1, const_tbl1) | Rhs -> (equiv_tbl2, const_tbl2)
in
if List.length nonvars > 1 then false
else
match (vars, nonvars) with
| [], _ | [_], [] ->
true
| v :: vars', _ ->
let r = find' tbl v in
let set = lookup_const' const_tbl r in
List.for_all ~f:(fun v' -> Exp.equal (find' tbl v') r) vars'
&& List.for_all ~f:(fun c -> Exp.Set.mem c set) nonvars
end
(** {2 Modules for checking whether join or meet loses too much info} *)
module type InfoLossCheckerSig = sig
val init : Prop.sigma -> Prop.sigma -> unit
val final : unit -> unit
val lost_little : side -> Exp.t -> Exp.t list -> bool
val add : side -> Exp.t -> Exp.t -> unit
end
module Dangling : sig
val init : Prop.sigma -> Prop.sigma -> unit
val final : unit -> unit
val check : side -> Exp.t -> bool
end = struct
let lexps1 = ref Exp.Set.empty
let lexps2 = ref Exp.Set.empty
let get_lexp_set' sigma =
let lexp_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma in
List.fold ~f:(fun set e -> Exp.Set.add e set) ~init:Exp.Set.empty lexp_lst
let init sigma1 sigma2 =
lexps1 := get_lexp_set' sigma1 ;
lexps2 := get_lexp_set' sigma2
let final () =
lexps1 := Exp.Set.empty ;
lexps2 := Exp.Set.empty
(* conservatively checks whether e is dangling *)
let check side e =
let lexps = match side with Lhs -> !lexps1 | Rhs -> !lexps2 in
match e with
| Exp.Var id ->
can_rename id && not (Exp.Set.mem e lexps)
| Exp.Const _ ->
not (Exp.Set.mem e lexps)
| Exp.BinOp _ ->
not (Exp.Set.mem e lexps)
| _ ->
false
end
module CheckJoinPre : InfoLossCheckerSig = struct
let init sigma1 sigma2 = NonInj.init () ; Dangling.init sigma1 sigma2
let final () = NonInj.final () ; Dangling.final ()
let fail_case side e es =
let side_op = opposite side in
match e with
| Exp.Lvar _ ->
false
| Exp.Var id when Ident.is_normal id ->
List.length es >= 1
| Exp.Var _ ->
if Int.equal Config.join_cond 0 then List.exists ~f:(Exp.equal Exp.zero) es
else if Dangling.check side e then (
let r = List.exists ~f:(fun e' -> not (Dangling.check side_op e')) es in
if r then (
L.d_str ".... Dangling Check (dang e:" ;
Sil.d_exp e ;
L.d_str ") (? es:" ;
Sil.d_exp_list es ;
L.d_strln ") ...." ;
L.d_ln () ) ;
r )
else
let r = List.exists ~f:(Dangling.check side_op) es in
if r then (
L.d_str ".... Dangling Check (notdang e:" ;
Sil.d_exp e ;
L.d_str ") (? es:" ;
Sil.d_exp_list es ;
L.d_strln ") ...." ;
L.d_ln () ) ;
r
| _ ->
false
let lost_little side e es =
let side_op = opposite side in
let es = match e with Exp.Const _ -> [] | _ -> es in
if fail_case side e es then false
else match es with [] | [_] -> true | _ -> NonInj.check side_op es
let add = NonInj.add
end
module CheckJoinPost : InfoLossCheckerSig = struct
let init _ _ = NonInj.init ()
let final () = NonInj.final ()
let fail_case _ e es =
match e with
| Exp.Lvar _ ->
false
| Exp.Var id when Ident.is_normal id ->
List.length es >= 1
| Exp.Var _ ->
false
| _ ->
false
let lost_little side e es =
let side_op = opposite side in
let es = match e with Exp.Const _ -> [] | _ -> es in
if fail_case side e es then false
else match es with [] | [_] -> true | _ -> NonInj.check side_op es
let add = NonInj.add
end
module CheckJoin : sig
val init : JoinState.mode -> Prop.sigma -> Prop.sigma -> unit
val final : unit -> unit
val lost_little : side -> Exp.t -> Exp.t list -> bool
val add : side -> Exp.t -> Exp.t -> unit
end = struct
let mode_ref : JoinState.mode ref = ref JoinState.Post
let init mode sigma1 sigma2 =
mode_ref := mode ;
match mode with
| JoinState.Pre ->
CheckJoinPre.init sigma1 sigma2
| JoinState.Post ->
CheckJoinPost.init sigma1 sigma2
let final () =
match !mode_ref with
| JoinState.Pre ->
CheckJoinPre.final () ;
mode_ref := JoinState.Post
| JoinState.Post ->
CheckJoinPost.final () ;
mode_ref := JoinState.Post
let lost_little side e es =
match !mode_ref with
| JoinState.Pre ->
CheckJoinPre.lost_little side e es
| JoinState.Post ->
CheckJoinPost.lost_little side e es
let add side e1 e2 =
match !mode_ref with
| JoinState.Pre ->
CheckJoinPre.add side e1 e2
| JoinState.Post ->
CheckJoinPost.add side e1 e2
end
(** {2 Module for worklist} *)
module Todo : sig
exception Empty
type t
val init : unit -> unit
val final : unit -> unit
val reset : (Exp.t * Exp.t * Exp.t) list -> unit
val push : Exp.t * Exp.t * Exp.t -> unit
val pop : unit -> Exp.t * Exp.t * Exp.t
val set : t -> unit
val take : unit -> t
end = struct
exception Empty
type t = (Exp.t * Exp.t * Exp.t) list
let tbl = ref []
let init () = tbl := []
let final () = tbl := []
let reset todo = tbl := todo
let push e = tbl := e :: !tbl
let pop () =
match !tbl with
| h :: t ->
tbl := t ;
h
| _ ->
raise Empty
let set todo = tbl := todo
let take () =
let res = !tbl in
tbl := [] ;
res
end
(** {2 Module for introducing fresh variables} *)
module FreshVarExp : sig
val init : unit -> unit
val get_fresh_exp : Exp.t -> Exp.t -> Exp.t
val get_induced_pi : Tenv.t -> unit -> Prop.pi
val final : unit -> unit
(*
val lookup : side -> Exp.t -> (Exp.t * Exp.t) option
*)
end = struct
let t = ref []
let init () = t := []
let final () = t := []
let entry_compare (e1, e2, _) (_, e2', _) =
let n1 = Exp.compare e1 e2 in
if n1 <> 0 then n1 else Exp.compare e2 e2'
let get_fresh_exp e1 e2 =
match
List.find ~f:(fun (e1', e2', _) -> Exp.equal e1 e1' && Exp.equal e2 e2') !t
|> Option.map ~f:trd3
with
| Some res ->
res
| None ->
let e = Exp.get_undefined (JoinState.get_footprint ()) in
t := (e1, e2, e) :: !t ;
e
let get_induced_atom tenv acc strict_lower upper e =
let ineq_lower = Prop.mk_inequality tenv (Exp.BinOp (Binop.Lt, strict_lower, e)) in
let ineq_upper = Prop.mk_inequality tenv (Exp.BinOp (Binop.Le, e, upper)) in
ineq_lower :: ineq_upper :: acc
let minus2_to_2 = List.map ~f:IntLit.of_int [-2; -1; 0; 1; 2]
let get_induced_pi tenv () =
let t_sorted = List.sort ~compare:entry_compare !t in
let add_and_chk_eq e1 e1' n =
match (e1, e1') with
| Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n1') ->
IntLit.eq (n1 ++ n) n1'
| _ ->
false
in
let add_and_gen_eq e e' n =
let e_plus_n = Exp.BinOp (Binop.PlusA, e, Exp.int n) in
Prop.mk_eq tenv e_plus_n e'
in
let rec f_eqs_entry ((e1, e2, e) as entry) eqs_acc t_seen = function
| [] ->
(eqs_acc, t_seen)
| ((e1', e2', e') as entry') :: t_rest' -> (
match
List.find ~f:(fun n -> add_and_chk_eq e1 e1' n && add_and_chk_eq e2 e2' n) minus2_to_2
|> Option.map ~f:(fun n ->
let eq = add_and_gen_eq e e' n in
let eqs_acc' = eq :: eqs_acc in
f_eqs_entry entry eqs_acc' t_seen t_rest' )
with
| Some res ->
res
| None ->
let t_seen' = entry' :: t_seen in
f_eqs_entry entry eqs_acc t_seen' t_rest' )
in
let rec f_eqs eqs_acc t_acc = function
| [] ->
(eqs_acc, t_acc)
| entry :: t_rest ->
let eqs_acc', t_rest' = f_eqs_entry entry eqs_acc [] t_rest in
let t_acc' = entry :: t_acc in
f_eqs eqs_acc' t_acc' t_rest'
in
let eqs, t_minimal = f_eqs [] [] t_sorted in
let f_ineqs acc (e1, e2, e) =
match (e1, e2) with
| Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n2) ->
let strict_lower1, upper1 =
if IntLit.leq n1 n2 then (n1 -- IntLit.one, n2) else (n2 -- IntLit.one, n1)
in
let e_strict_lower1 = Exp.int strict_lower1 in
let e_upper1 = Exp.int upper1 in
get_induced_atom tenv acc e_strict_lower1 e_upper1 e
| _ ->
acc
in
List.fold ~f:f_ineqs ~init:eqs t_minimal
end
(** {2 Modules for renaming} *)
module Rename : sig
type data_opt = ExtFresh | ExtDefault of Exp.t
val init : unit -> unit
val final : unit -> unit
val reset : unit -> (Exp.t * Exp.t * Exp.t) list
val extend : Exp.t -> Exp.t -> data_opt -> Exp.t
val check : (side -> Exp.t -> Exp.t list -> bool) -> bool
val get_others : side -> Exp.t -> (Exp.t * Exp.t) option
val get_other_atoms : Tenv.t -> side -> Sil.atom -> (Sil.atom * Sil.atom) option
val lookup : side -> Exp.t -> Exp.t
val lookup_list : side -> Exp.t list -> Exp.t list
val lookup_list_todo : side -> Exp.t list -> Exp.t list
val to_subst_proj : side -> unit Ident.HashQueue.t -> Sil.subst
val to_subst_emb : side -> Sil.subst
(*
val get : Exp.t -> Exp.t -> Exp.t option
val pp : printenv -> Format.formatter -> (Exp.t * Exp.t * Exp.t) list -> unit
*)
end = struct
type t = (Exp.t * Exp.t * Exp.t) list
let tbl : t ref = ref []
let init () = tbl := []
let final () = tbl := []
let reset () =
let f = function
| Exp.Var id, e, _ | e, Exp.Var id, _ ->
Ident.is_footprint id
&& Exp.free_vars e |> Sequence.for_all ~f:(fun id -> not (Ident.is_primed id))
| _ ->
false
in
let t' = List.filter ~f !tbl in
tbl := t' ;
t'
let push v = tbl := v :: !tbl
let check lost_little =
let f side e =
let side_op = opposite side in
let assoc_es =
match e with
| Exp.Const _ ->
[]
| Exp.Lvar _ | Exp.Var _ | Exp.BinOp (Binop.PlusA, Exp.Var _, _) ->
let is_same_e (e1, e2, _) = Exp.equal e (select side e1 e2) in
let assoc = List.filter ~f:is_same_e !tbl in
List.map ~f:(fun (e1, e2, _) -> select side_op e1 e2) assoc
| _ ->
L.d_str "no pattern match in check lost_little e: " ;
Sil.d_exp e ;
L.d_ln () ;
raise Sil.JoinFail
in
lost_little side e assoc_es
in
let lhs_es = List.map ~f:(fun (e1, _, _) -> e1) !tbl in
let rhs_es = List.map ~f:(fun (_, e2, _) -> e2) !tbl in
List.for_all ~f:(f Rhs) rhs_es && List.for_all ~f:(f Lhs) lhs_es
let lookup_side' side e =
let f (e1, e2, _) = Exp.equal e (select side e1 e2) in
List.filter ~f !tbl
let lookup_side_induced' side e =
let res = ref [] in
let f v =
match (v, side) with
| (Exp.BinOp (Binop.PlusA, e1', Exp.Const (Const.Cint i)), e2, e'), Lhs when Exp.equal e e1'
->
let c' = Exp.int (IntLit.neg i) in
let v' = (e1', Exp.BinOp (Binop.PlusA, e2, c'), Exp.BinOp (Binop.PlusA, e', c')) in
res := v' :: !res
| (e1, Exp.BinOp (Binop.PlusA, e2', Exp.Const (Const.Cint i)), e'), Rhs when Exp.equal e e2'
->
let c' = Exp.int (IntLit.neg i) in
let v' = (Exp.BinOp (Binop.PlusA, e1, c'), e2', Exp.BinOp (Binop.PlusA, e', c')) in
res := v' :: !res
| _ ->
()
in
List.iter ~f !tbl ; List.rev !res
(* Return the triple whose side is [e], if it exists unique *)
let lookup' todo side e : Exp.t =
match e with
| Exp.Var id when can_rename id -> (
let r = lookup_side' side e in
match r with
| [((_, _, id) as t)] ->
if todo then Todo.push t ;
id
| _ ->
L.d_strln "failure reason 9" ; raise Sil.JoinFail )
| Exp.Var _ | Exp.Const _ | Exp.Lvar _ ->
if todo then Todo.push (e, e, e) ;
e
| _ ->
L.d_strln "failure reason 10" ; raise Sil.JoinFail
let lookup side e = lookup' false side e
let lookup_todo side e = lookup' true side e
let lookup_list side l = List.map ~f:(lookup side) l
let lookup_list_todo side l = List.map ~f:(lookup_todo side) l
let to_subst_proj (side : side) vars =
let renaming_restricted =
List.filter
~f:(function _, _, Exp.Var i -> Ident.HashQueue.mem vars i | _ -> assert false)
!tbl
in
let sub_list_side =
List.map
~f:(function e1, e2, Exp.Var i -> (i, select side e1 e2) | _ -> assert false)
renaming_restricted
in
let sub_list_side_sorted =
List.sort ~compare:(fun (_, e) (_, e') -> Exp.compare e e') sub_list_side
in
let rec find_duplicates = function
| (_, e) :: ((_, e') :: _ as t) ->
Exp.equal e e' || find_duplicates t
| _ ->
false
in
if find_duplicates sub_list_side_sorted then (
L.d_strln "failure reason 11" ; raise Sil.JoinFail )
else Sil.subst_of_list sub_list_side
let to_subst_emb (side : side) =
let renaming_restricted =
let pick_id_case (e1, e2, _) =
match select side e1 e2 with Exp.Var i -> can_rename i | _ -> false
in
List.filter ~f:pick_id_case !tbl
in
let sub_list =
let project (e1, e2, e) =
match select side e1 e2 with Exp.Var i -> (i, e) | _ -> assert false
in
List.map ~f:project renaming_restricted
in
let sub_list_sorted =
let compare (i, _) (i', _) = Ident.compare i i' in
List.sort ~compare sub_list
in
let rec find_duplicates = function
| (i, _) :: ((i', _) :: _ as t) ->
Ident.equal i i' || find_duplicates t
| _ ->
false
in
if find_duplicates sub_list_sorted then ( L.d_strln "failure reason 12" ; raise Sil.JoinFail )
else Sil.subst_of_list sub_list_sorted
let get_others' f_lookup side e =
let side_op = opposite side in
let r = f_lookup side e in
match r with [] -> None | [(e1, e2, e')] -> Some (e', select side_op e1 e2) | _ -> None
let get_others = get_others' lookup_side'
let get_others_direct_or_induced side e =
let others = get_others side e in
match others with None -> get_others' lookup_side_induced' side e | Some _ -> others
let get_others_deep side = function
| Exp.BinOp (op, e, e') -> (
let others = get_others_direct_or_induced side e in
let others' = get_others_direct_or_induced side e' in
match (others, others') with
| None, _ | _, None ->
None
| Some (e_res, e_op), Some (e_res', e_op') ->
let e_res'' = Exp.BinOp (op, e_res, e_res') in
let e_op'' = Exp.BinOp (op, e_op, e_op') in
Some (e_res'', e_op'') )
| _ ->
None
let get_other_atoms tenv side atom_in =
let build_other_atoms construct side e =
if Config.trace_join then ( L.d_str "build_other_atoms: " ; Sil.d_exp e ; L.d_ln () ) ;
let others1 = get_others_direct_or_induced side e in
let others2 = match others1 with None -> get_others_deep side e | Some _ -> others1 in
match others2 with
| None ->
None
| Some (e_res, e_op) ->
let a_res = construct e_res in
let a_op = construct e_op in
if Config.trace_join then (
L.d_str "build_other_atoms (successful) " ;
Sil.d_atom a_res ;
L.d_str ", " ;
Sil.d_atom a_op ;
L.d_ln () ) ;
Some (a_res, a_op)
in
let exp_contains_only_normal_ids e = Exp.free_vars e |> Sequence.for_all ~f:Ident.is_normal in
let atom_contains_only_normal_ids a =
Sil.atom_free_vars a |> Sequence.for_all ~f:Ident.is_normal
in
let normal_ids_only = atom_contains_only_normal_ids atom_in in
if normal_ids_only then Some (atom_in, atom_in)
else
match atom_in with
| Sil.Aneq ((Exp.Var id as e), e')
when exp_contains_only_normal_ids e' && not (Ident.is_normal id) ->
(* e' cannot also be a normal id according to the guard so we can consider the two cases
separately (this case and the next) *)
build_other_atoms (fun e0 -> Prop.mk_neq tenv e0 e') side e
| Sil.Aneq (e', (Exp.Var id as e))
when exp_contains_only_normal_ids e' && not (Ident.is_normal id) ->
build_other_atoms (fun e0 -> Prop.mk_neq tenv e0 e') side e
| Sil.Apred (a, (Var id as e) :: es)
when (not (Ident.is_normal id)) && List.for_all ~f:exp_contains_only_normal_ids es ->
build_other_atoms (fun e0 -> Prop.mk_pred tenv a (e0 :: es)) side e
| Sil.Anpred (a, (Var id as e) :: es)
when (not (Ident.is_normal id)) && List.for_all ~f:exp_contains_only_normal_ids es ->
build_other_atoms (fun e0 -> Prop.mk_npred tenv a (e0 :: es)) side e
| Sil.Aeq ((Exp.Var id as e), e')
when exp_contains_only_normal_ids e' && not (Ident.is_normal id) ->
(* e' cannot also be a normal id according to the guard so we can consider the two cases
separately (this case and the next) *)
build_other_atoms (fun e0 -> Prop.mk_eq tenv e0 e') side e
| Sil.Aeq (e', (Exp.Var id as e))
when exp_contains_only_normal_ids e' && not (Ident.is_normal id) ->
build_other_atoms (fun e0 -> Prop.mk_eq tenv e0 e') side e
| Sil.Aeq (Exp.BinOp (Binop.Le, e, e'), Exp.Const (Const.Cint i))
| Sil.Aeq (Exp.Const (Const.Cint i), Exp.BinOp (Binop.Le, e, e'))
when IntLit.isone i && exp_contains_only_normal_ids e' ->
let construct e0 = Prop.mk_inequality tenv (Exp.BinOp (Binop.Le, e0, e')) in
build_other_atoms construct side e
| Sil.Aeq (Exp.BinOp (Binop.Lt, e', e), Exp.Const (Const.Cint i))
| Sil.Aeq (Exp.Const (Const.Cint i), Exp.BinOp (Binop.Lt, e', e))
when IntLit.isone i && exp_contains_only_normal_ids e' ->
let construct e0 = Prop.mk_inequality tenv (Exp.BinOp (Binop.Lt, e', e0)) in
build_other_atoms construct side e
| Sil.Aeq _ | Aneq _ | Apred _ | Anpred _ ->
None
type data_opt = ExtFresh | ExtDefault of Exp.t
(* Extend the renaming relation. At least one of e1 and e2
* should be a primed or footprint variable *)
let extend e1 e2 default_op =
match
List.find ~f:(fun (f1, f2, _) -> Exp.equal e1 f1 && Exp.equal e2 f2) !tbl
|> Option.map ~f:trd3
with
| Some res ->
res
| None ->
let some_primed () =
Exp.free_vars e1 |> Sequence.exists ~f:Ident.is_primed
|| Exp.free_vars e2 |> Sequence.exists ~f:Ident.is_primed
in
let e =
if
(not (Exp.free_vars e1 |> Sequence.exists ~f:can_rename))
&& not (Exp.free_vars e2 |> Sequence.exists ~f:can_rename)
then
if Exp.equal e1 e2 then e1 else ( L.d_strln "failure reason 13" ; raise Sil.JoinFail )
else
match default_op with
| ExtDefault e ->
e
| ExtFresh ->
let kind =
if JoinState.get_footprint () && not (some_primed ()) then Ident.kfootprint
else Ident.kprimed
in
Exp.Var (Ident.create_fresh kind)
in
let entry = (e1, e2, e) in
push entry ; Todo.push entry ; e
end
(** {2 Functions for constructing fresh sil data types} *)
let extend_side' kind side e =
match Rename.get_others side e with
| None ->
let e_op = Exp.Var (Ident.create_fresh kind) in
let e_new = Exp.Var (Ident.create_fresh kind) in
let e1, e2 = match side with Lhs -> (e, e_op) | Rhs -> (e_op, e) in
Rename.extend e1 e2 (Rename.ExtDefault e_new)
| Some (e', _) ->
e'
let rec exp_construct_fresh side e =
match e with
| Exp.Var id ->
if Ident.is_normal id then (
Todo.push (e, e, e) ;
e )
else if Ident.is_footprint id then extend_side' Ident.kfootprint side e
else extend_side' Ident.kprimed side e
| Exp.Const _ ->
e
| Exp.Cast (t, e1) ->
let e1' = exp_construct_fresh side e1 in
Exp.Cast (t, e1')
| Exp.UnOp (unop, e1, topt) ->
let e1' = exp_construct_fresh side e1 in
Exp.UnOp (unop, e1', topt)
| Exp.BinOp (binop, e1, e2) ->
let e1' = exp_construct_fresh side e1 in
let e2' = exp_construct_fresh side e2 in
Exp.BinOp (binop, e1', e2')
| Exp.Exn _ ->
e
| Exp.Closure _ ->
e
| Exp.Lvar _ ->
e
| Exp.Lfield (e1, fld, typ) ->
let e1' = exp_construct_fresh side e1 in
Exp.Lfield (e1', fld, typ)
| Exp.Lindex (e1, e2) ->
let e1' = exp_construct_fresh side e1 in
let e2' = exp_construct_fresh side e2 in
Exp.Lindex (e1', e2')
| Exp.Sizeof {dynamic_length= None} ->
e
| Exp.Sizeof ({dynamic_length= Some len} as sizeof) ->
Exp.Sizeof {sizeof with dynamic_length= Some (exp_construct_fresh side len)}
let strexp_construct_fresh side =
let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in
Sil.strexp_expmap f
let hpred_construct_fresh side =
let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in
Sil.hpred_expmap f
(** {2 Join and Meet for Ids} *)
let ident_same_kind_primed_footprint id1 id2 =
(Ident.is_primed id1 && Ident.is_primed id2) || (Ident.is_footprint id1 && Ident.is_footprint id2)
let ident_partial_join (id1 : Ident.t) (id2 : Ident.t) =
match (Ident.is_normal id1, Ident.is_normal id2) with
| true, true ->
if Ident.equal id1 id2 then Exp.Var id1
else ( L.d_strln "failure reason 14" ; raise Sil.JoinFail )
| true, _ | _, true ->
Rename.extend (Exp.Var id1) (Exp.Var id2) Rename.ExtFresh
| _ ->
if not (ident_same_kind_primed_footprint id1 id2) then (
L.d_strln "failure reason 15" ; raise Sil.JoinFail )
else
let e1 = Exp.Var id1 in
let e2 = Exp.Var id2 in
Rename.extend e1 e2 Rename.ExtFresh
let ident_partial_meet (id1 : Ident.t) (id2 : Ident.t) =
match (Ident.is_normal id1, Ident.is_normal id2) with
| true, true ->
if Ident.equal id1 id2 then Exp.Var id1
else ( L.d_strln "failure reason 16" ; raise Sil.JoinFail )
| true, _ ->
let e1, e2 = (Exp.Var id1, Exp.Var id2) in
Rename.extend e1 e2 (Rename.ExtDefault e1)
| _, true ->
let e1, e2 = (Exp.Var id1, Exp.Var id2) in
Rename.extend e1 e2 (Rename.ExtDefault e2)
| _ ->
if Ident.is_primed id1 && Ident.is_primed id2 then
Rename.extend (Exp.Var id1) (Exp.Var id2) Rename.ExtFresh
else if Ident.is_footprint id1 && Ident.equal id1 id2 then
let e = Exp.Var id1 in
Rename.extend e e (Rename.ExtDefault e)
else ( L.d_strln "failure reason 17" ; raise Sil.JoinFail )
(** {2 Join and Meet for Exps} *)
let option_partial_join partial_join o1 o2 =
match (o1, o2) with None, _ -> o2 | _, None -> o1 | Some x1, Some x2 -> partial_join x1 x2
let const_partial_join c1 c2 =
let is_int = function Const.Cint _ -> true | _ -> false in
if Const.equal c1 c2 then Exp.Const c1
else if Const.kind_equal c1 c2 && not (is_int c1) then (
L.d_strln "failure reason 18" ; raise Sil.JoinFail )
else if !BiabductionConfig.abs_val >= 2 then
FreshVarExp.get_fresh_exp (Exp.Const c1) (Exp.Const c2)
else ( L.d_strln "failure reason 19" ; raise Sil.JoinFail )
let rec exp_partial_join (e1 : Exp.t) (e2 : Exp.t) : Exp.t =
(* L.d_str "exp_partial_join "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
match (e1, e2) with
| Exp.Var id1, Exp.Var id2 ->
ident_partial_join id1 id2
| Exp.Var id, Exp.Const _ | Exp.Const _, Exp.Var id ->
if Ident.is_normal id then ( L.d_strln "failure reason 20" ; raise Sil.JoinFail )
else Rename.extend e1 e2 Rename.ExtFresh
| Exp.Const c1, Exp.Const c2 ->
const_partial_join c1 c2
| Exp.Var id, Exp.Lvar _ | Exp.Lvar _, Exp.Var id ->
if Ident.is_normal id then ( L.d_strln "failure reason 21" ; raise Sil.JoinFail )
else Rename.extend e1 e2 Rename.ExtFresh
| Exp.BinOp (Binop.PlusA, Exp.Var id1, Exp.Const _), Exp.Var id2
| Exp.Var id1, Exp.BinOp (Binop.PlusA, Exp.Var id2, Exp.Const _)
when ident_same_kind_primed_footprint id1 id2 ->
Rename.extend e1 e2 Rename.ExtFresh
| Exp.BinOp (Binop.PlusA, Exp.Var id1, Exp.Const (Const.Cint c1)), Exp.Const (Const.Cint c2)
when can_rename id1 ->
let c2' = c2 -- c1 in
let e_res = Rename.extend (Exp.Var id1) (Exp.int c2') Rename.ExtFresh in
Exp.BinOp (Binop.PlusA, e_res, Exp.int c1)
| Exp.Const (Const.Cint c1), Exp.BinOp (Binop.PlusA, Exp.Var id2, Exp.Const (Const.Cint c2))
when can_rename id2 ->
let c1' = c1 -- c2 in
let e_res = Rename.extend (Exp.int c1') (Exp.Var id2) Rename.ExtFresh in
Exp.BinOp (Binop.PlusA, e_res, Exp.int c2)
| Exp.Cast (t1, e1), Exp.Cast (t2, e2) ->
if not (Typ.equal t1 t2) then ( L.d_strln "failure reason 22" ; raise Sil.JoinFail )
else
let e1'' = exp_partial_join e1 e2 in
Exp.Cast (t1, e1'')
| Exp.UnOp (unop1, e1, topt1), Exp.UnOp (unop2, e2, _) ->
if not (Unop.equal unop1 unop2) then ( L.d_strln "failure reason 23" ; raise Sil.JoinFail )
else Exp.UnOp (unop1, exp_partial_join e1 e2, topt1) (* should be topt1 = topt2 *)
| Exp.BinOp (Binop.PlusPI, e1, e1'), Exp.BinOp (Binop.PlusPI, e2, e2') ->
let e1'' = exp_partial_join e1 e2 in
let e2'' =
match (e1', e2') with
| Exp.Const _, Exp.Const _ ->
exp_partial_join e1' e2'
| _ ->
FreshVarExp.get_fresh_exp e1 e2
in
Exp.BinOp (Binop.PlusPI, e1'', e2'')
| Exp.BinOp (binop1, e1, e1'), Exp.BinOp (binop2, e2, e2') ->
if not (Binop.equal binop1 binop2) then ( L.d_strln "failure reason 24" ; raise Sil.JoinFail )
else
let e1'' = exp_partial_join e1 e2 in
let e2'' = exp_partial_join e1' e2' in
Exp.BinOp (binop1, e1'', e2'')
| Exp.Lvar pvar1, Exp.Lvar pvar2 ->
if not (Pvar.equal pvar1 pvar2) then ( L.d_strln "failure reason 25" ; raise Sil.JoinFail )
else e1
| Exp.Lfield (e1, f1, t1), Exp.Lfield (e2, f2, _) ->
if not (Typ.Fieldname.equal f1 f2) then ( L.d_strln "failure reason 26" ; raise Sil.JoinFail )
else Exp.Lfield (exp_partial_join e1 e2, f1, t1) (* should be t1 = t2 *)
| Exp.Lindex (e1, e1'), Exp.Lindex (e2, e2') ->
let e1'' = exp_partial_join e1 e2 in
let e2'' = exp_partial_join e1' e2' in
Exp.Lindex (e1'', e2'')
| ( Exp.Sizeof {typ= t1; nbytes= nbytes1; dynamic_length= len1; subtype= st1}
, Exp.Sizeof {typ= t2; nbytes= nbytes2; dynamic_length= len2; subtype= st2} ) ->
(* forget the static sizes if they differ *)
let nbytes_join i1 i2 = if Int.equal i1 i2 then Some i1 else None in
Exp.Sizeof
{ typ= typ_partial_join t1 t2
; nbytes= option_partial_join nbytes_join nbytes1 nbytes2
; dynamic_length= dynamic_length_partial_join len1 len2
; subtype= Subtype.join st1 st2 }
| _ ->
L.d_str "exp_partial_join no match " ;
Sil.d_exp e1 ;
L.d_str " " ;
Sil.d_exp e2 ;
L.d_ln () ;
raise Sil.JoinFail
and length_partial_join len1 len2 =
match (len1, len2) with
| Exp.BinOp (Binop.PlusA, e1, Exp.Const c1), Exp.BinOp (Binop.PlusA, e2, Exp.Const c2) ->
let e' = exp_partial_join e1 e2 in
let c' = exp_partial_join (Exp.Const c1) (Exp.Const c2) in
Exp.BinOp (Binop.PlusA, e', c')
| Exp.BinOp (Binop.PlusA, _, _), Exp.BinOp (Binop.PlusA, _, _) ->
Rename.extend len1 len2 Rename.ExtFresh
| Exp.Var id1, Exp.Var id2 when Ident.equal id1 id2 ->
len1
| _ ->
exp_partial_join len1 len2
and static_length_partial_join l1 l2 =
option_partial_join (fun len1 len2 -> if IntLit.eq len1 len2 then Some len1 else None) l1 l2
and dynamic_length_partial_join l1 l2 =
option_partial_join (fun len1 len2 -> Some (length_partial_join len1 len2)) l1 l2
and typ_partial_join (t1 : Typ.t) (t2 : Typ.t) =
match (t1.desc, t2.desc) with
| Typ.Tptr (t1, pk1), Typ.Tptr (t2, pk2)
when Typ.equal_ptr_kind pk1 pk2 && Typ.equal_quals t1.quals t2.quals ->
Typ.mk ~default:t1 (Tptr (typ_partial_join t1 t2, pk1))
(* quals are the same for t1 and t2 *)
| ( Typ.Tarray {elt= typ1; length= len1; stride= stride1}
, Typ.Tarray {elt= typ2; length= len2; stride= stride2} )
when Typ.equal_quals typ1.quals typ2.quals ->
let elt = typ_partial_join typ1 typ2 in
let length = static_length_partial_join len1 len2 in
let stride = static_length_partial_join stride1 stride2 in
Typ.mk_array ~default:t1 elt ?length ?stride
(* quals are the same for t1 and t2 *)
| _ when Typ.equal t1 t2 ->
t1 (* common case *)
| _ ->
L.d_str "typ_partial_join no match " ;
Typ.d_full t1 ;
L.d_str " " ;
Typ.d_full t2 ;
L.d_ln () ;
raise Sil.JoinFail
let rec exp_partial_meet (e1 : Exp.t) (e2 : Exp.t) : Exp.t =
match (e1, e2) with
| Exp.Var id1, Exp.Var id2 ->
ident_partial_meet id1 id2
| Exp.Var id, Exp.Const _ ->
if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault e2)
else ( L.d_strln "failure reason 27" ; raise Sil.JoinFail )
| Exp.Const _, Exp.Var id ->
if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault e1)
else ( L.d_strln "failure reason 28" ; raise Sil.JoinFail )
| Exp.Const c1, Exp.Const c2 ->
if Const.equal c1 c2 then e1 else ( L.d_strln "failure reason 29" ; raise Sil.JoinFail )
| Exp.Cast (t1, e1), Exp.Cast (t2, e2) ->
if not (Typ.equal t1 t2) then ( L.d_strln "failure reason 30" ; raise Sil.JoinFail )
else
let e1'' = exp_partial_meet e1 e2 in
Exp.Cast (t1, e1'')
| Exp.UnOp (unop1, e1, topt1), Exp.UnOp (unop2, e2, _) ->
if not (Unop.equal unop1 unop2) then ( L.d_strln "failure reason 31" ; raise Sil.JoinFail )
else Exp.UnOp (unop1, exp_partial_meet e1 e2, topt1) (* should be topt1 = topt2 *)
| Exp.BinOp (binop1, e1, e1'), Exp.BinOp (binop2, e2, e2') ->
if not (Binop.equal binop1 binop2) then ( L.d_strln "failure reason 32" ; raise Sil.JoinFail )
else
let e1'' = exp_partial_meet e1 e2 in
let e2'' = exp_partial_meet e1' e2' in
Exp.BinOp (binop1, e1'', e2'')
| Exp.Var id, Exp.Lvar _ ->
if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault e2)
else ( L.d_strln "failure reason 33" ; raise Sil.JoinFail )
| Exp.Lvar _, Exp.Var id ->
if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault e1)
else ( L.d_strln "failure reason 34" ; raise Sil.JoinFail )
| Exp.Lvar pvar1, Exp.Lvar pvar2 ->
if not (Pvar.equal pvar1 pvar2) then ( L.d_strln "failure reason 35" ; raise Sil.JoinFail )
else e1
| Exp.Lfield (e1, f1, t1), Exp.Lfield (e2, f2, _) ->
if not (Typ.Fieldname.equal f1 f2) then ( L.d_strln "failure reason 36" ; raise Sil.JoinFail )
else Exp.Lfield (exp_partial_meet e1 e2, f1, t1) (* should be t1 = t2 *)
| Exp.Lindex (e1, e1'), Exp.Lindex (e2, e2') ->
let e1'' = exp_partial_meet e1 e2 in
let e2'' = exp_partial_meet e1' e2' in
Exp.Lindex (e1'', e2'')
| _ ->
L.d_strln "failure reason 37" ; raise Sil.JoinFail
let exp_list_partial_join = List.map2_exn ~f:exp_partial_join
let exp_list_partial_meet = List.map2_exn ~f:exp_partial_meet
(** {2 Join and Meet for Strexp} *)
let rec strexp_partial_join mode (strexp1 : Sil.strexp) (strexp2 : Sil.strexp) : Sil.strexp =
let rec f_fld_se_list inst mode acc fld_se_list1 fld_se_list2 =
match (fld_se_list1, fld_se_list2) with
| [], [] ->
Sil.Estruct (List.rev acc, inst)
| [], _ | _, [] -> (
match mode with
| JoinState.Pre ->
L.d_strln "failure reason 42" ; raise Sil.JoinFail
| JoinState.Post ->
Sil.Estruct (List.rev acc, inst) )
| (fld1, se1) :: fld_se_list1', (fld2, se2) :: fld_se_list2' -> (
let comparison = Typ.Fieldname.compare fld1 fld2 in
if Int.equal comparison 0 then
let strexp' = strexp_partial_join mode se1 se2 in
let fld_se_list_new = (fld1, strexp') :: acc in
f_fld_se_list inst mode fld_se_list_new fld_se_list1' fld_se_list2'
else
match mode with
| JoinState.Pre ->
L.d_strln "failure reason 43" ; raise Sil.JoinFail
| JoinState.Post ->
if comparison < 0 then f_fld_se_list inst mode acc fld_se_list1' fld_se_list2
else if comparison > 0 then f_fld_se_list inst mode acc fld_se_list1 fld_se_list2'
else assert false )
(* This case should not happen. *)
in
let rec f_idx_se_list inst len idx_se_list_acc idx_se_list1 idx_se_list2 =
match (idx_se_list1, idx_se_list2) with
| [], [] ->
Sil.Earray (len, List.rev idx_se_list_acc, inst)
| [], _ | _, [] -> (
match mode with
| JoinState.Pre ->
L.d_strln "failure reason 44" ; raise Sil.JoinFail
| JoinState.Post ->
Sil.Earray (len, List.rev idx_se_list_acc, inst) )
| (idx1, se1) :: idx_se_list1', (idx2, se2) :: idx_se_list2' ->
let idx = exp_partial_join idx1 idx2 in
let strexp' = strexp_partial_join mode se1 se2 in
let idx_se_list_new = (idx, strexp') :: idx_se_list_acc in
f_idx_se_list inst len idx_se_list_new idx_se_list1' idx_se_list2'
in
match (strexp1, strexp2) with
| Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) ->
Sil.Eexp (exp_partial_join e1 e2, Sil.inst_partial_join inst1 inst2)
| Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) ->
let inst = Sil.inst_partial_join inst1 inst2 in
f_fld_se_list inst mode [] fld_se_list1 fld_se_list2
| Sil.Earray (len1, idx_se_list1, inst1), Sil.Earray (len2, idx_se_list2, inst2) ->
let len = length_partial_join len1 len2 in
let inst = Sil.inst_partial_join inst1 inst2 in
f_idx_se_list inst len [] idx_se_list1 idx_se_list2
| _ ->
L.d_strln "no match in strexp_partial_join" ;
raise Sil.JoinFail
let rec strexp_partial_meet (strexp1 : Sil.strexp) (strexp2 : Sil.strexp) : Sil.strexp =
let construct side rev_list ref_list =
let construct_offset_se (off, se) = (off, strexp_construct_fresh side se) in
let acc = List.map ~f:construct_offset_se ref_list in
List.rev_append rev_list acc
in
let rec f_fld_se_list inst acc fld_se_list1 fld_se_list2 =
match (fld_se_list1, fld_se_list2) with
| [], [] ->
Sil.Estruct (List.rev acc, inst)
| [], _ ->
Sil.Estruct (construct Rhs acc fld_se_list2, inst)
| _, [] ->
Sil.Estruct (construct Lhs acc fld_se_list1, inst)
| (fld1, se1) :: fld_se_list1', (fld2, se2) :: fld_se_list2' ->
let comparison = Typ.Fieldname.compare fld1 fld2 in
if comparison < 0 then
let se' = strexp_construct_fresh Lhs se1 in
let acc_new = (fld1, se') :: acc in
f_fld_se_list inst acc_new fld_se_list1' fld_se_list2
else if comparison > 0 then
let se' = strexp_construct_fresh Rhs se2 in
let acc_new = (fld2, se') :: acc in
f_fld_se_list inst acc_new fld_se_list1 fld_se_list2'
else
let strexp' = strexp_partial_meet se1 se2 in
let acc_new = (fld1, strexp') :: acc in
f_fld_se_list inst acc_new fld_se_list1' fld_se_list2'
in
let rec f_idx_se_list inst len acc idx_se_list1 idx_se_list2 =
match (idx_se_list1, idx_se_list2) with
| [], [] ->
Sil.Earray (len, List.rev acc, inst)
| [], _ ->
Sil.Earray (len, construct Rhs acc idx_se_list2, inst)
| _, [] ->
Sil.Earray (len, construct Lhs acc idx_se_list1, inst)
| (idx1, se1) :: idx_se_list1', (idx2, se2) :: idx_se_list2' ->
let idx = exp_partial_meet idx1 idx2 in
let se' = strexp_partial_meet se1 se2 in
let acc_new = (idx, se') :: acc in
f_idx_se_list inst len acc_new idx_se_list1' idx_se_list2'
in
match (strexp1, strexp2) with
| Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) ->
Sil.Eexp (exp_partial_meet e1 e2, Sil.inst_partial_meet inst1 inst2)
| Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) ->
let inst = Sil.inst_partial_meet inst1 inst2 in
f_fld_se_list inst [] fld_se_list1 fld_se_list2
| Sil.Earray (len1, idx_se_list1, inst1), Sil.Earray (len2, idx_se_list2, inst2)
when Exp.equal len1 len2 ->
let inst = Sil.inst_partial_meet inst1 inst2 in
f_idx_se_list inst len1 [] idx_se_list1 idx_se_list2
| _ ->
L.d_strln "failure reason 52" ; raise Sil.JoinFail
(** {2 Join and Meet for kind, hpara, hpara_dll} *)
let kind_join k1 k2 =
match (k1, k2) with
| Sil.Lseg_PE, _ ->
Sil.Lseg_PE
| _, Sil.Lseg_PE ->
Sil.Lseg_PE
| Sil.Lseg_NE, Sil.Lseg_NE ->
Sil.Lseg_NE
let kind_meet k1 k2 =
match (k1, k2) with
| Sil.Lseg_NE, _ ->
Sil.Lseg_NE
| _, Sil.Lseg_NE ->
Sil.Lseg_NE
| Sil.Lseg_PE, Sil.Lseg_PE ->
Sil.Lseg_PE
let hpara_partial_join tenv (hpara1 : Sil.hpara) (hpara2 : Sil.hpara) : Sil.hpara =
if Match.hpara_match_with_impl tenv true hpara2 hpara1 then hpara1
else if Match.hpara_match_with_impl tenv true hpara1 hpara2 then hpara2
else ( L.d_strln "failure reason 53" ; raise Sil.JoinFail )
let hpara_partial_meet tenv (hpara1 : Sil.hpara) (hpara2 : Sil.hpara) : Sil.hpara =
if Match.hpara_match_with_impl tenv true hpara2 hpara1 then hpara2
else if Match.hpara_match_with_impl tenv true hpara1 hpara2 then hpara1
else ( L.d_strln "failure reason 54" ; raise Sil.JoinFail )
let hpara_dll_partial_join tenv (hpara1 : Sil.hpara_dll) (hpara2 : Sil.hpara_dll) : Sil.hpara_dll =
if Match.hpara_dll_match_with_impl tenv true hpara2 hpara1 then hpara1
else if Match.hpara_dll_match_with_impl tenv true hpara1 hpara2 then hpara2
else ( L.d_strln "failure reason 55" ; raise Sil.JoinFail )
let hpara_dll_partial_meet tenv (hpara1 : Sil.hpara_dll) (hpara2 : Sil.hpara_dll) : Sil.hpara_dll =
if Match.hpara_dll_match_with_impl tenv true hpara2 hpara1 then hpara2
else if Match.hpara_dll_match_with_impl tenv true hpara1 hpara2 then hpara1
else ( L.d_strln "failure reason 56" ; raise Sil.JoinFail )
(** {2 Join and Meet for hpred} *)
let hpred_partial_join tenv mode (todo : Exp.t * Exp.t * Exp.t) (hpred1 : Sil.hpred)
(hpred2 : Sil.hpred) : Sil.hpred =
let e1, e2, e = todo in
match (hpred1, hpred2) with
| Sil.Hpointsto (_, se1, te1), Sil.Hpointsto (_, se2, te2) ->
let te = exp_partial_join te1 te2 in
Prop.mk_ptsto tenv e (strexp_partial_join mode se1 se2) te
| Sil.Hlseg (k1, hpara1, _, next1, shared1), Sil.Hlseg (k2, hpara2, _, next2, shared2) ->
let hpara' = hpara_partial_join tenv hpara1 hpara2 in
let next' = exp_partial_join next1 next2 in
let shared' = exp_list_partial_join shared1 shared2 in
Prop.mk_lseg tenv (kind_join k1 k2) hpara' e next' shared'
| ( Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1)
, Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) ) ->
let fwd1 = Exp.equal e1 iF1 in
let fwd2 = Exp.equal e2 iF2 in
let hpara' = hpara_dll_partial_join tenv para1 para2 in
let iF', iB' =
if fwd1 && fwd2 then (e, exp_partial_join iB1 iB2)
else if (not fwd1) && not fwd2 then (exp_partial_join iF1 iF2, e)
else ( L.d_strln "failure reason 57" ; raise Sil.JoinFail )
in
let oF' = exp_partial_join oF1 oF2 in
let oB' = exp_partial_join oB1 oB2 in
let shared' = exp_list_partial_join shared1 shared2 in
Prop.mk_dllseg tenv (kind_join k1 k2) hpara' iF' oB' oF' iB' shared'
| _ ->
assert false
let hpred_partial_meet tenv (todo : Exp.t * Exp.t * Exp.t) (hpred1 : Sil.hpred)
(hpred2 : Sil.hpred) : Sil.hpred =
let e1, e2, e = todo in
match (hpred1, hpred2) with
| Sil.Hpointsto (_, se1, te1), Sil.Hpointsto (_, se2, te2) when Exp.equal te1 te2 ->
Prop.mk_ptsto tenv e (strexp_partial_meet se1 se2) te1
| Sil.Hpointsto _, _ | _, Sil.Hpointsto _ ->
L.d_strln "failure reason 58" ; raise Sil.JoinFail
| Sil.Hlseg (k1, hpara1, _, next1, shared1), Sil.Hlseg (k2, hpara2, _, next2, shared2) ->
let hpara' = hpara_partial_meet tenv hpara1 hpara2 in
let next' = exp_partial_meet next1 next2 in
let shared' = exp_list_partial_meet shared1 shared2 in
Prop.mk_lseg tenv (kind_meet k1 k2) hpara' e next' shared'
| ( Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1)
, Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) ) ->
let fwd1 = Exp.equal e1 iF1 in
let fwd2 = Exp.equal e2 iF2 in
let hpara' = hpara_dll_partial_meet tenv para1 para2 in
let iF', iB' =
if fwd1 && fwd2 then (e, exp_partial_meet iB1 iB2)
else if (not fwd1) && not fwd2 then (exp_partial_meet iF1 iF2, e)
else ( L.d_strln "failure reason 59" ; raise Sil.JoinFail )
in
let oF' = exp_partial_meet oF1 oF2 in
let oB' = exp_partial_meet oB1 oB2 in
let shared' = exp_list_partial_meet shared1 shared2 in
Prop.mk_dllseg tenv (kind_meet k1 k2) hpara' iF' oB' oF' iB' shared'
| _ ->
assert false
(** {2 Join and Meet for Sigma} *)
let find_hpred_by_address tenv (e : Exp.t) (sigma : Prop.sigma) : Sil.hpred option * Prop.sigma =
let is_root_for_e e' =
match Prover.is_root tenv Prop.prop_emp e' e with None -> false | Some _ -> true
in
let contains_e = function
| Sil.Hpointsto (e', _, _) ->
is_root_for_e e'
| Sil.Hlseg (_, _, e', _, _) ->
is_root_for_e e'
| Sil.Hdllseg (_, _, iF, _, _, iB, _) ->
is_root_for_e iF || is_root_for_e iB
in
let rec f sigma_acc = function
| [] ->
(None, sigma)
| hpred :: sigma ->
if contains_e hpred then (Some hpred, List.rev_append sigma_acc sigma)
else f (hpred :: sigma_acc) sigma
in
f [] sigma
let same_pred (hpred1 : Sil.hpred) (hpred2 : Sil.hpred) : bool =
match (hpred1, hpred2) with
| Sil.Hpointsto _, Sil.Hpointsto _ ->
true
| Sil.Hlseg _, Sil.Hlseg _ ->
true
| Sil.Hdllseg _, Sil.Hdllseg _ ->
true
| _ ->
false
(* check that applying renaming to the lhs / rhs of [sigma_new]
* gives [sigma] and that the renaming is injective *)
let sigma_renaming_check (lhs : side) (sigma : Prop.sigma) (sigma_new : Prop.sigma) =
(* apply the lhs / rhs of the renaming to sigma,
* and check that the renaming of primed vars is injective *)
let fav_sigma = Prop.sigma_free_vars sigma_new |> Ident.hashqueue_of_sequence in
let sub = Rename.to_subst_proj lhs fav_sigma in
let sigma' = Prop.sigma_sub sub sigma_new in
equal_sigma sigma sigma'
let sigma_renaming_check_lhs = sigma_renaming_check Lhs
let sigma_renaming_check_rhs = sigma_renaming_check Rhs
let rec sigma_partial_join' tenv mode (sigma_acc : Prop.sigma) (sigma1_in : Prop.sigma)
(sigma2_in : Prop.sigma) : Prop.sigma * Prop.sigma * Prop.sigma =
let lookup_and_expand side e e' =
match (Rename.get_others side e, side) with
| None, _ ->
L.d_strln "failure reason 60" ; raise Sil.JoinFail
| Some (e_res, e_op), Lhs ->
(e_res, exp_partial_join e' e_op)
| Some (e_res, e_op), Rhs ->
(e_res, exp_partial_join e_op e')
in
let join_list_and_non side root' hlseg e opposite =
match hlseg with
| Sil.Hlseg (_, hpara, root, next, shared) ->
let next' = do_side side exp_partial_join next opposite in
let shared' = Rename.lookup_list side shared in
CheckJoin.add side root next ;
Sil.Hlseg (Sil.Lseg_PE, hpara, root', next', shared')
| Sil.Hdllseg (_, hpara, iF, oB, oF, iB, shared) when Exp.equal iF e ->
let oF' = do_side side exp_partial_join oF opposite in
let shared' = Rename.lookup_list side shared in
let oB', iB' = lookup_and_expand side oB iB in
(*
let oB' = Rename.lookup side oB in
let iB' = Rename.lookup side iB in
*)
CheckJoin.add side iF oF ;
CheckJoin.add side oB iB ;
Sil.Hdllseg (Sil.Lseg_PE, hpara, root', oB', oF', iB', shared')
| Sil.Hdllseg (_, hpara, iF, oB, oF, iB, shared) when Exp.equal iB e ->
let oB' = do_side side exp_partial_join oB opposite in
let shared' = Rename.lookup_list side shared in
let oF', iF' = lookup_and_expand side oF iF in
(*
let oF' = Rename.lookup side oF in
let iF' = Rename.lookup side iF in
*)
CheckJoin.add side iF oF ;
CheckJoin.add side oB iB ;
Sil.Hdllseg (Sil.Lseg_PE, hpara, iF', oB', oF', root', shared')
| _ ->
assert false
in
let update_list side lseg root' =
match lseg with
| Sil.Hlseg (k, hpara, _, next, shared) ->
let next' = Rename.lookup side next and shared' = Rename.lookup_list_todo side shared in
Sil.Hlseg (k, hpara, root', next', shared')
| _ ->
assert false
in
let update_dllseg side dllseg iF iB =
match dllseg with
| Sil.Hdllseg (k, hpara, _, oB, oF, _, shared) ->
let oB' = Rename.lookup side oB
and oF' = Rename.lookup side oF
and shared' = Rename.lookup_list_todo side shared in
Sil.Hdllseg (k, hpara, iF, oB', oF', iB, shared')
| _ ->
assert false
in
(* Drop the part of 'other' sigma corresponding to 'target' sigma if possible.
'side' describes that target is Lhs or Rhs.
'todo' describes the start point. *)
let cut_sigma side todo (target : Prop.sigma) (other : Prop.sigma) =
let list_is_empty l = if l <> [] then ( L.d_strln "failure reason 61" ; raise Sil.JoinFail ) in
let x = Todo.take () in
Todo.push todo ;
let res =
match side with
| Lhs ->
let res, target', other' = sigma_partial_join' tenv mode [] target other in
list_is_empty target' ;
sigma_renaming_check_lhs target res ;
other'
| Rhs ->
let res, other', target' = sigma_partial_join' tenv mode [] other target in
list_is_empty target' ;
sigma_renaming_check_rhs target res ;
other'
in
Todo.set x ; res
in
let cut_lseg side todo lseg sigma =
match lseg with
| Sil.Hlseg (_, hpara, root, next, shared) ->
let _, sigma_lseg = Sil.hpara_instantiate hpara root next shared in
cut_sigma side todo sigma_lseg sigma
| _ ->
assert false
in
let cut_dllseg side todo root lseg sigma =
match lseg with
| Sil.Hdllseg (_, hpara, _, oB, oF, _, shared) ->
let _, sigma_dllseg = Sil.hpara_dll_instantiate hpara root oB oF shared in
cut_sigma side todo sigma_dllseg sigma
| _ ->
assert false
in
try
let todo_curr = Todo.pop () in
let e1, e2, e = todo_curr in
if Config.trace_join then (
L.d_strln ".... sigma_partial_join' ...." ;
L.d_str "TODO: " ;
Sil.d_exp e1 ;
L.d_str "," ;
Sil.d_exp e2 ;
L.d_str "," ;
Sil.d_exp e ;
L.d_ln () ;
L.d_strln "SIGMA1 =" ;
Prop.d_sigma sigma1_in ;
L.d_ln () ;
L.d_strln "SIGMA2 =" ;
Prop.d_sigma sigma2_in ;
L.d_ln () ;
L.d_ln () ) ;
let hpred_opt1, sigma1 = find_hpred_by_address tenv e1 sigma1_in in
let hpred_opt2, sigma2 = find_hpred_by_address tenv e2 sigma2_in in
match (hpred_opt1, hpred_opt2) with
| None, None ->
sigma_partial_join' tenv mode sigma_acc sigma1 sigma2
| Some (Sil.Hlseg (k, _, _, _, _) as lseg), None
| Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg), None ->
if (not Config.nelseg) || Sil.equal_lseg_kind k Sil.Lseg_PE then
let sigma_acc' = join_list_and_non Lhs e lseg e1 e2 :: sigma_acc in
sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2
else ( L.d_strln "failure reason 62" ; raise Sil.JoinFail )
| None, Some (Sil.Hlseg (k, _, _, _, _) as lseg)
| None, Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg) ->
if (not Config.nelseg) || Sil.equal_lseg_kind k Sil.Lseg_PE then
let sigma_acc' = join_list_and_non Rhs e lseg e2 e1 :: sigma_acc in
sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2
else ( L.d_strln "failure reason 63" ; raise Sil.JoinFail )
| None, _ | _, None ->
L.d_strln "failure reason 64" ; raise Sil.JoinFail
| Some hpred1, Some hpred2 when same_pred hpred1 hpred2 ->
let hpred_res1 = hpred_partial_join tenv mode todo_curr hpred1 hpred2 in
sigma_partial_join' tenv mode (hpred_res1 :: sigma_acc) sigma1 sigma2
| Some (Sil.Hlseg _ as lseg), Some hpred2 ->
let sigma2' = cut_lseg Lhs todo_curr lseg (hpred2 :: sigma2) in
let sigma_acc' = update_list Lhs lseg e :: sigma_acc in
sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2'
| Some hpred1, Some (Sil.Hlseg _ as lseg) ->
let sigma1' = cut_lseg Rhs todo_curr lseg (hpred1 :: sigma1) in
let sigma_acc' = update_list Rhs lseg e :: sigma_acc in
sigma_partial_join' tenv mode sigma_acc' sigma1' sigma2
| Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some hpred2 when Exp.equal e1 iF1 ->
let iB_res = exp_partial_join iB1 e2 in
let sigma2' = cut_dllseg Lhs todo_curr iF1 dllseg (hpred2 :: sigma2) in
let sigma_acc' = update_dllseg Lhs dllseg e iB_res :: sigma_acc in
CheckJoin.add Lhs iF1 iB1 ;
(* add equality iF1=iB1 *)
sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2'
| Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some hpred2
(* when Exp.equal e1 iB1 *) ->
let iF_res = exp_partial_join iF1 e2 in
let sigma2' = cut_dllseg Lhs todo_curr iB1 dllseg (hpred2 :: sigma2) in
let sigma_acc' = update_dllseg Lhs dllseg iF_res e :: sigma_acc in
CheckJoin.add Lhs iF1 iB1 ;
(* add equality iF1=iB1 *)
sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2'
| Some hpred1, Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg) when Exp.equal e2 iF2 ->
let iB_res = exp_partial_join e1 iB2 in
let sigma1' = cut_dllseg Rhs todo_curr iF2 dllseg (hpred1 :: sigma1) in
let sigma_acc' = update_dllseg Rhs dllseg e iB_res :: sigma_acc in
CheckJoin.add Rhs iF2 iB2 ;
(* add equality iF2=iB2 *)
sigma_partial_join' tenv mode sigma_acc' sigma1' sigma2
| Some hpred1, Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg) ->
let iF_res = exp_partial_join e1 iF2 in
let sigma1' = cut_dllseg Rhs todo_curr iB2 dllseg (hpred1 :: sigma1) in
let sigma_acc' = update_dllseg Rhs dllseg iF_res e :: sigma_acc in
CheckJoin.add Rhs iF2 iB2 ;
(* add equality iF2=iB2 *)
sigma_partial_join' tenv mode sigma_acc' sigma1' sigma2
| Some (Sil.Hpointsto _), Some (Sil.Hpointsto _) ->
assert false
(* Should be handled by a guarded case *)
with Todo.Empty -> (
match (sigma1_in, sigma2_in) with
| _ :: _, _ :: _ ->
L.d_strln "todo is empty, but the sigmas are not" ;
raise Sil.JoinFail
| _ ->
(sigma_acc, sigma1_in, sigma2_in) )
let sigma_partial_join tenv mode (sigma1 : Prop.sigma) (sigma2 : Prop.sigma) :
Prop.sigma * Prop.sigma * Prop.sigma =
CheckJoin.init mode sigma1 sigma2 ;
let lost_little = CheckJoin.lost_little in
let s1, s2, s3 = sigma_partial_join' tenv mode [] sigma1 sigma2 in
SymOp.try_finally
~f:(fun () ->
if Rename.check lost_little then (s1, s2, s3)
else ( L.d_strln "failed Rename.check" ; raise Sil.JoinFail ) )
~finally:CheckJoin.final
let rec sigma_partial_meet' tenv (sigma_acc : Prop.sigma) (sigma1_in : Prop.sigma)
(sigma2_in : Prop.sigma) : Prop.sigma =
try
let todo_curr = Todo.pop () in
let e1, e2, e = todo_curr in
L.d_strln ".... sigma_partial_meet' ...." ;
L.d_str "TODO: " ;
Sil.d_exp e1 ;
L.d_str "," ;
Sil.d_exp e2 ;
L.d_str "," ;
Sil.d_exp e ;
L.d_ln () ;
L.d_str "PROP1=" ;
Prop.d_sigma sigma1_in ;
L.d_ln () ;
L.d_str "PROP2=" ;
Prop.d_sigma sigma2_in ;
L.d_ln () ;
L.d_ln () ;
let hpred_opt1, sigma1 = find_hpred_by_address tenv e1 sigma1_in in
let hpred_opt2, sigma2 = find_hpred_by_address tenv e2 sigma2_in in
match (hpred_opt1, hpred_opt2) with
| None, None ->
sigma_partial_meet' tenv sigma_acc sigma1 sigma2
| Some hpred, None ->
let hpred' = hpred_construct_fresh Lhs hpred in
let sigma_acc' = hpred' :: sigma_acc in
sigma_partial_meet' tenv sigma_acc' sigma1 sigma2
| None, Some hpred ->
let hpred' = hpred_construct_fresh Rhs hpred in
let sigma_acc' = hpred' :: sigma_acc in
sigma_partial_meet' tenv sigma_acc' sigma1 sigma2
| Some hpred1, Some hpred2 when same_pred hpred1 hpred2 ->
let hpred' = hpred_partial_meet tenv todo_curr hpred1 hpred2 in
sigma_partial_meet' tenv (hpred' :: sigma_acc) sigma1 sigma2
| Some _, Some _ ->
L.d_strln "failure reason 65" ; raise Sil.JoinFail
with Todo.Empty -> (
match (sigma1_in, sigma2_in) with
| [], [] ->
sigma_acc
| _, _ ->
L.d_strln "todo is empty, but the sigmas are not" ;
raise Sil.JoinFail )
let sigma_partial_meet tenv (sigma1 : Prop.sigma) (sigma2 : Prop.sigma) : Prop.sigma =
sigma_partial_meet' tenv [] sigma1 sigma2
let widening_top =
(* nearly max_int but not so close to overflow *)
IntLit.of_int64 Int64.max_value -- IntLit.of_int 1000
let widening_bottom =
(* nearly min_int but not so close to underflow *)
IntLit.of_int64 Int64.min_value ++ IntLit.of_int 1000
(** {2 Join and Meet for Pi} *)
let pi_partial_join tenv mode (ep1 : Prop.exposed Prop.t) (ep2 : Prop.exposed Prop.t)
(pi1 : Prop.pi) (pi2 : Prop.pi) : Prop.pi =
let get_array_len prop =
(* find some array length in the prop, to be used as heuritic for upper bound in widening *)
let len_list = ref [] in
let do_hpred = function
| Sil.Hpointsto (_, Sil.Earray (Exp.Const (Const.Cint n), _, _), _) ->
if IntLit.geq n IntLit.one then len_list := n :: !len_list
| _ ->
()
in
List.iter ~f:do_hpred prop.Prop.sigma ;
!len_list
in
let bounds =
let bounds1 = get_array_len ep1 in
let bounds2 = get_array_len ep2 in
let bounds_sorted = List.sort ~compare:IntLit.compare_value (bounds1 @ bounds2) in
List.rev (List.remove_consecutive_duplicates ~equal:IntLit.eq bounds_sorted)
in
let widening_atom a =
(* widening heuristic for upper bound: take the length of some array, -2 and -1 *)
match (Prop.atom_exp_le_const a, bounds) with
| Some (e, n), len :: _ ->
let first_try = IntLit.sub len IntLit.one in
let second_try = IntLit.sub len IntLit.two in
let bound =
if IntLit.leq n first_try then if IntLit.leq n second_try then second_try else first_try
else widening_top
in
let a' = Prop.mk_inequality tenv (Exp.BinOp (Binop.Le, e, Exp.int bound)) in
Some a'
| Some (e, _), [] ->
let bound = widening_top in
let a' = Prop.mk_inequality tenv (Exp.BinOp (Binop.Le, e, Exp.int bound)) in
Some a'
| _ -> (
match Prop.atom_const_lt_exp a with
| None ->
None
| Some (n, e) ->
let bound =
if IntLit.leq IntLit.minus_one n then IntLit.minus_one else widening_bottom
in
let a' = Prop.mk_inequality tenv (Exp.BinOp (Binop.Lt, Exp.int bound, e)) in
Some a' )
in
let is_stronger_le e n a =
match Prop.atom_exp_le_const a with
| None ->
false
| Some (e', n') ->
Exp.equal e e' && IntLit.lt n' n
in
let is_stronger_lt n e a =
match Prop.atom_const_lt_exp a with
| None ->
false
| Some (n', e') ->
Exp.equal e e' && IntLit.lt n n'
in
let join_atom_check_pre p a =
(* check for atoms in pre mode: fail if the negation is implied by the other side *)
let not_a = Prover.atom_negate tenv a in
if Prover.check_atom tenv p not_a then (
L.d_str "join_atom_check failed on " ;
Sil.d_atom a ;
L.d_ln () ;
raise Sil.JoinFail )
in
let join_atom_check_attribute p a =
(* check for attribute: fail if the attribute is not in the other side *)
if not (Prover.check_atom tenv p a) then (
L.d_str "join_atom_check_attribute failed on " ;
Sil.d_atom a ;
L.d_ln () ;
raise Sil.JoinFail )
in
let join_atom side p_op pi_op a =
(* try to find the atom corresponding to a on the other side, and check if it is implied *)
match Rename.get_other_atoms tenv side a with
| None ->
None
| Some (a_res, a_op) -> (
if JoinState.equal_mode mode JoinState.Pre then join_atom_check_pre p_op a_op ;
if Attribute.is_pred a then join_atom_check_attribute p_op a_op ;
if not (Prover.check_atom tenv p_op a_op) then None
else
match Prop.atom_exp_le_const a_op with
| None -> (
match Prop.atom_const_lt_exp a_op with
| None ->
Some a_res
| Some (n, e) ->
if List.exists ~f:(is_stronger_lt n e) pi_op then widening_atom a_res
else Some a_res )
| Some (e, n) ->
if List.exists ~f:(is_stronger_le e n) pi_op then widening_atom a_res else Some a_res
)
in
let handle_atom_with_widening len p_op pi_op atom_list a =
(* find a join for the atom, if it fails apply widening heuristing and try again *)
match join_atom len p_op pi_op a with
| None -> (
match widening_atom a with
| None ->
atom_list
| Some a' -> (
match join_atom len p_op pi_op a' with None -> atom_list | Some a' -> a' :: atom_list ) )
| Some a' ->
a' :: atom_list
in
if Config.trace_join then (
L.d_str "pi1: " ; Prop.d_pi pi1 ; L.d_ln () ; L.d_str "pi2: " ; Prop.d_pi pi2 ; L.d_ln () ) ;
let atom_list1 =
let p2 = Prop.normalize tenv ep2 in
List.fold ~f:(handle_atom_with_widening Lhs p2 pi2) ~init:[] pi1
in
if Config.trace_join then ( L.d_str "atom_list1: " ; Prop.d_pi atom_list1 ; L.d_ln () ) ;
let atom_list2 =
let p1 = Prop.normalize tenv ep1 in
List.fold ~f:(handle_atom_with_widening Rhs p1 pi1) ~init:[] pi2
in
if Config.trace_join then ( L.d_str "atom_list2: " ; Prop.d_pi atom_list2 ; L.d_ln () ) ;
let atom_list_combined = IList.inter ~cmp:Sil.compare_atom atom_list1 atom_list2 in
if Config.trace_join then (
L.d_str "atom_list_combined: " ; Prop.d_pi atom_list_combined ; L.d_ln () ) ;
atom_list_combined
let pi_partial_meet tenv (p : Prop.normal Prop.t) (ep1 : 'a Prop.t) (ep2 : 'b Prop.t) :
Prop.normal Prop.t =
let sub1 = Rename.to_subst_emb Lhs in
let sub2 = Rename.to_subst_emb Rhs in
let dom1 = Ident.idlist_to_idset (Sil.sub_domain sub1) in
let dom2 = Ident.idlist_to_idset (Sil.sub_domain sub2) in
let handle_atom sub dom atom =
if Sil.atom_free_vars atom |> Sequence.for_all ~f:(fun id -> Ident.Set.mem id dom) then
Sil.atom_sub sub atom
else ( L.d_str "handle_atom failed on " ; Sil.d_atom atom ; L.d_ln () ; raise Sil.JoinFail )
in
let f1 p' atom = Prop.prop_atom_and tenv p' (handle_atom sub1 dom1 atom) in
let f2 p' atom = Prop.prop_atom_and tenv p' (handle_atom sub2 dom2 atom) in
let pi1 = ep1.Prop.pi in
let pi2 = ep2.Prop.pi in
let p_pi1 = List.fold ~f:f1 ~init:p pi1 in
let p_pi2 = List.fold ~f:f2 ~init:p_pi1 pi2 in
if Prover.check_inconsistency_base tenv p_pi2 then (
L.d_strln "check_inconsistency_base failed" ;
raise Sil.JoinFail )
else p_pi2
(** {2 Join and Meet for Prop} *)
let eprop_partial_meet tenv (ep1 : 'a Prop.t) (ep2 : 'b Prop.t) : 'c Prop.t =
SymOp.pay () ;
(* pay one symop *)
let sigma1 = ep1.Prop.sigma in
let sigma2 = ep2.Prop.sigma in
let es1 = sigma_get_start_lexps_sort sigma1 in
let es2 = sigma_get_start_lexps_sort sigma2 in
let es = IList.merge_sorted_nodup ~cmp:Exp.compare ~res:[] es1 es2 in
let sub_check _ =
let sub1 = ep1.Prop.sub in
let sub2 = ep2.Prop.sub in
let range1 = Sil.sub_range sub1 in
let f e = Exp.free_vars e |> Sequence.for_all ~f:Ident.is_normal in
Sil.equal_subst sub1 sub2 && List.for_all ~f range1
in
if not (sub_check ()) then ( L.d_strln "sub_check() failed" ; raise Sil.JoinFail )
else
let todos = List.map ~f:(fun x -> (x, x, x)) es in
List.iter ~f:Todo.push todos ;
let sigma_new = sigma_partial_meet tenv sigma1 sigma2 in
let ep = Prop.set ep1 ~sigma:sigma_new in
let ep' = Prop.set ep ~pi:[] in
let p' = Prop.normalize tenv ep' in
let p'' = pi_partial_meet tenv p' ep1 ep2 in
let res = Prop.prop_rename_primed_footprint_vars tenv p'' in
res
let prop_partial_meet tenv p1 p2 =
Rename.init () ;
FreshVarExp.init () ;
Todo.init () ;
try
SymOp.try_finally
~f:(fun () -> Some (eprop_partial_meet tenv p1 p2))
~finally:(fun () -> Rename.final () ; FreshVarExp.final () ; Todo.final ())
with Sil.JoinFail -> None
let eprop_partial_join' tenv mode (ep1 : Prop.exposed Prop.t) (ep2 : Prop.exposed Prop.t) :
Prop.normal Prop.t =
SymOp.pay () ;
(* pay one symop *)
let sigma1 = ep1.Prop.sigma in
let sigma2 = ep2.Prop.sigma in
let es1 = sigma_get_start_lexps_sort sigma1 in
let es2 = sigma_get_start_lexps_sort sigma2 in
let simple_check = Int.equal (List.length es1) (List.length es2) in
let rec expensive_check es1' es2' =
match (es1', es2') with
| [], [] ->
true
| [], _ :: _ | _ :: _, [] ->
false
| e1 :: es1'', e2 :: es2'' ->
Exp.equal e1 e2 && expensive_check es1'' es2''
in
let sub_common, eqs_from_sub1, eqs_from_sub2 =
let sub1 = ep1.Prop.sub in
let sub2 = ep2.Prop.sub in
let sub_common, sub1_only, sub2_only = Sil.sub_symmetric_difference sub1 sub2 in
let sub_common_normal, sub_common_other =
let f e = Exp.free_vars e |> Sequence.for_all ~f:Ident.is_normal in
Sil.sub_range_partition f sub_common
in
let eqs1, eqs2 =
let sub_to_eqs sub =
List.map ~f:(fun (id, e) -> Sil.Aeq (Exp.Var id, e)) (Sil.sub_to_list sub)
in
let eqs1 = sub_to_eqs sub1_only @ sub_to_eqs sub_common_other in
let eqs2 = sub_to_eqs sub2_only in
(eqs1, eqs2)
in
(sub_common_normal, eqs1, eqs2)
in
if not (simple_check && expensive_check es1 es2) then (
if not simple_check then L.d_strln "simple_check failed"
else L.d_strln "expensive_check failed" ;
raise Sil.JoinFail ) ;
let todos = List.map ~f:(fun x -> (x, x, x)) es1 in
List.iter ~f:Todo.push todos ;
match sigma_partial_join tenv mode sigma1 sigma2 with
| sigma_new, [], [] ->
L.d_strln "sigma_partial_join succeeded" ;
let ep_sub =
let ep = Prop.set ep1 ~pi:[] in
Prop.set ep ~sub:sub_common
in
let p_sub_sigma = Prop.normalize tenv (Prop.set ep_sub ~sigma:sigma_new) in
let p_sub_sigma_pi =
let pi1 = ep1.Prop.pi @ eqs_from_sub1 in
let pi2 = ep2.Prop.pi @ eqs_from_sub2 in
let pi' = pi_partial_join tenv mode ep1 ep2 pi1 pi2 in
L.d_strln "pi_partial_join succeeded" ;
let pi_from_fresh_vars = FreshVarExp.get_induced_pi tenv () in
let pi_all = pi' @ pi_from_fresh_vars in
List.fold ~f:(Prop.prop_atom_and tenv) ~init:p_sub_sigma pi_all
in
p_sub_sigma_pi
| _ ->
L.d_strln "leftovers not empty" ; raise Sil.JoinFail
let footprint_partial_join' tenv (p1 : Prop.normal Prop.t) (p2 : Prop.normal Prop.t) :
Prop.normal Prop.t * Prop.normal Prop.t =
if not !BiabductionConfig.footprint then (p1, p2)
else
let fp1 = Prop.extract_footprint p1 in
let fp2 = Prop.extract_footprint p2 in
let efp = eprop_partial_join' tenv JoinState.Pre fp1 fp2 in
let pi_fp =
let pi_fp0 = Prop.get_pure efp in
let f a = Sil.atom_free_vars a |> Sequence.for_all ~f:Ident.is_footprint in
List.filter ~f pi_fp0
in
let sigma_fp =
let sigma_fp0 = efp.Prop.sigma in
let f a =
Sil.hpred_free_vars a |> Sequence.exists ~f:(fun a -> not (Ident.is_footprint a))
in
if List.exists ~f sigma_fp0 then ( L.d_strln "failure reason 66" ; raise Sil.JoinFail ) ;
sigma_fp0
in
let ep1' = Prop.set p1 ~pi_fp ~sigma_fp in
let ep2' = Prop.set p2 ~pi_fp ~sigma_fp in
(Prop.normalize tenv ep1', Prop.normalize tenv ep2')
let prop_partial_join pname tenv mode p1 p2 =
let res_by_implication_only =
if !BiabductionConfig.footprint then None
else if Prover.check_implication pname tenv p1 (Prop.expose p2) then Some p2
else if Prover.check_implication pname tenv p2 (Prop.expose p1) then Some p1
else None
in
match res_by_implication_only with
| None -> (
if !BiabductionConfig.footprint then JoinState.set_footprint true ;
Rename.init () ;
FreshVarExp.init () ;
Todo.init () ;
try
SymOp.try_finally
~f:(fun () ->
let p1', p2' = footprint_partial_join' tenv p1 p2 in
let rename_footprint = Rename.reset () in
Todo.reset rename_footprint ;
let res = eprop_partial_join' tenv mode (Prop.expose p1') (Prop.expose p2') in
if !BiabductionConfig.footprint then JoinState.set_footprint false ;
Some res )
~finally:(fun () -> Rename.final () ; FreshVarExp.final () ; Todo.final ())
with Sil.JoinFail -> None )
| Some _ ->
res_by_implication_only
let eprop_partial_join tenv mode (ep1 : Prop.exposed Prop.t) (ep2 : Prop.exposed Prop.t) :
Prop.normal Prop.t =
Rename.init () ;
FreshVarExp.init () ;
Todo.init () ;
SymOp.try_finally
~f:(fun () -> eprop_partial_join' tenv mode ep1 ep2)
~finally:(fun () -> Rename.final () ; FreshVarExp.final () ; Todo.final ())
(** {2 Join and Meet for Propset} *)
let list_reduce name dd f list =
let rec element_list_reduce acc (x, p1) = function
| [] ->
((x, p1), List.rev acc)
| (y, p2) :: ys -> (
L.d_strln ("COMBINE[" ^ name ^ "] ....") ;
L.d_str "ENTRY1: " ;
L.d_ln () ;
dd x ;
L.d_ln () ;
L.d_str "ENTRY2: " ;
L.d_ln () ;
dd y ;
L.d_ln () ;
L.d_ln () ;
match f x y with
| None ->
L.d_strln_color Red (".... COMBINE[" ^ name ^ "] FAILED ...") ;
element_list_reduce ((y, p2) :: acc) (x, p1) ys
| Some x' ->
L.d_strln_color Green (".... COMBINE[" ^ name ^ "] SUCCEEDED ....") ;
L.d_strln "RESULT:" ;
dd x' ;
L.d_ln () ;
element_list_reduce acc (x', p1) ys )
in
let rec reduce acc = function
| [] ->
List.rev acc
| x :: xs ->
let x', xs' = element_list_reduce [] x xs in
reduce (x' :: acc) xs'
in
reduce [] list
let pathset_collapse_impl pname tenv pset =
let f x y =
if Prover.check_implication pname tenv x (Prop.expose y) then Some y
else if Prover.check_implication pname tenv y (Prop.expose x) then Some x
else None
in
let plist = Paths.PathSet.elements pset in
let plist' = list_reduce "JOIN_IMPL" Prop.d_prop f plist in
Paths.PathSet.from_renamed_list plist'
let jprop_partial_join tenv mode jp1 jp2 =
let p1, p2 =
( Prop.expose (BiabductionSummary.Jprop.to_prop jp1)
, Prop.expose (BiabductionSummary.Jprop.to_prop jp2) )
in
try
let p = eprop_partial_join tenv mode p1 p2 in
let p_renamed = Prop.prop_rename_primed_footprint_vars tenv p in
Some (BiabductionSummary.Jprop.Joined (0, p_renamed, jp1, jp2))
with Sil.JoinFail -> None
let jplist_collapse tenv mode jplist =
let f = jprop_partial_join tenv mode in
list_reduce "JOIN" BiabductionSummary.Jprop.d_shallow f jplist
(** Add identifiers to a list of jprops *)
let jprop_list_add_ids jplist =
let seq_number = ref 0 in
let rec do_jprop = function
| BiabductionSummary.Jprop.Prop (_, p) ->
incr seq_number ;
BiabductionSummary.Jprop.Prop (!seq_number, p)
| BiabductionSummary.Jprop.Joined (_, p, jp1, jp2) ->
let jp1' = do_jprop jp1 in
let jp2' = do_jprop jp2 in
incr seq_number ;
BiabductionSummary.Jprop.Joined (!seq_number, p, jp1', jp2')
in
List.map ~f:(fun (p, path) -> (do_jprop p, path)) jplist
let proplist_collapse tenv mode plist =
let jplist = List.map ~f:(fun (p, path) -> (BiabductionSummary.Jprop.Prop (0, p), path)) plist in
let jplist_joined = jplist_collapse tenv mode (jplist_collapse tenv mode jplist) in
jprop_list_add_ids jplist_joined
let proplist_collapse_pre tenv plist =
let plist' = List.map ~f:(fun p -> (p, ())) plist in
List.map ~f:fst (proplist_collapse tenv JoinState.Pre plist')
let pathset_collapse tenv pset =
let plist = Paths.PathSet.elements pset in
let plist' = proplist_collapse tenv JoinState.Post plist in
Paths.PathSet.from_renamed_list
(List.map ~f:(fun (p, path) -> (BiabductionSummary.Jprop.to_prop p, path)) plist')
let pathset_join pname tenv (pset1 : Paths.PathSet.t) (pset2 : Paths.PathSet.t) :
Paths.PathSet.t * Paths.PathSet.t =
let mode = JoinState.Post in
let pset_to_plist pset =
let f_list p pa acc = (p, pa) :: acc in
Paths.PathSet.fold f_list pset []
in
let ppalist1 = pset_to_plist pset1 in
let ppalist2 = pset_to_plist pset2 in
let rec join_proppath_plist ppalist2_acc ((p2, pa2) as ppa2) = function
| [] ->
(ppa2, List.rev ppalist2_acc)
| ((p2', pa2') as ppa2') :: ppalist2_rest -> (
L.d_strln ".... JOIN ...." ;
L.d_strln "JOIN SYM HEAP1: " ;
Prop.d_prop p2 ;
L.d_ln () ;
L.d_strln "JOIN SYM HEAP2: " ;
Prop.d_prop p2' ;
L.d_ln () ;
L.d_ln () ;
match prop_partial_join pname tenv mode p2 p2' with
| None ->
L.d_strln_color Red ".... JOIN FAILED ...." ;
L.d_ln () ;
join_proppath_plist (ppa2' :: ppalist2_acc) ppa2 ppalist2_rest
| Some p2'' ->
L.d_strln_color Green ".... JOIN SUCCEEDED ...." ;
L.d_strln "RESULT SYM HEAP:" ;
Prop.d_prop p2'' ;
L.d_ln () ;
L.d_ln () ;
join_proppath_plist ppalist2_acc (p2'', Paths.Path.join pa2 pa2') ppalist2_rest )
in
let rec join ppalist1_cur ppalist2_acc = function
| [] ->
(ppalist1_cur, ppalist2_acc)
| ppa2 :: ppalist2_rest ->
let ppa2', ppalist2_acc' = join_proppath_plist [] ppa2 ppalist2_acc in
let ppa2'', ppalist2_rest' = join_proppath_plist [] ppa2' ppalist2_rest in
let ppa2_new, ppalist1_cur' = join_proppath_plist [] ppa2'' ppalist1_cur in
join ppalist1_cur' (ppa2_new :: ppalist2_acc') ppalist2_rest'
in
let ppalist1_res_, ppalist2_res_ = join ppalist1 [] ppalist2 in
let ren l = List.map ~f:(fun (p, x) -> (Prop.prop_rename_primed_footprint_vars tenv p, x)) l in
let ppalist1_res, ppalist2_res = (ren ppalist1_res_, ren ppalist2_res_) in
let res =
(Paths.PathSet.from_renamed_list ppalist1_res, Paths.PathSet.from_renamed_list ppalist2_res)
in
res
(**
The meet operator does two things:
1) makes the result logically stronger (just like additive conjunction)
2) makes the result spatially larger (just like multiplicative conjunction).
Assuming that the meet operator forms a partial commutative monoid (soft assumption: it means
that the results are more predictable), try to combine every element of plist with any other element.
Return a list of the same lenght, with each element maximally combined. The algorithm is quadratic.
The operation is dependent on the order in which elements are combined; there is a straightforward
order - independent algorithm but it is exponential.
*)
let proplist_meet_generate tenv plist =
let props_done = ref Propset.empty in
let combine p (porig, pcombined) =
SymOp.pay () ;
(* pay one symop *)
L.d_strln ".... MEET ...." ;
L.d_strln "MEET SYM HEAP1: " ;
Prop.d_prop p ;
L.d_ln () ;
L.d_strln "MEET SYM HEAP2: " ;
Prop.d_prop pcombined ;
L.d_ln () ;
match prop_partial_meet tenv p pcombined with
| None ->
L.d_strln_color Red ".... MEET FAILED ...." ;
L.d_ln () ;
(porig, pcombined)
| Some pcombined' ->
L.d_strln_color Green ".... MEET SUCCEEDED ...." ;
L.d_strln "RESULT SYM HEAP:" ;
Prop.d_prop pcombined' ;
L.d_ln () ;
L.d_ln () ;
(porig, pcombined')
in
let rec proplist_meet = function
| [] ->
()
| (porig, pcombined) :: pplist ->
(* use porig instead of pcombined because it might be combinable with more othe props *)
(* e.g. porig might contain a global var to add to the ture branch of a conditional *)
(* but pcombined might have been combined with the false branch already *)
let pplist' = List.map ~f:(combine porig) pplist in
props_done := Propset.add tenv pcombined !props_done ;
proplist_meet pplist'
in
proplist_meet (List.map ~f:(fun p -> (p, p)) plist) ;
!props_done
let propset_meet_generate_pre tenv pset =
let plist = Propset.to_proplist pset in
if Int.equal Config.meet_level 0 then plist
else
let pset1 = proplist_meet_generate tenv plist in
let pset_new = Propset.diff pset1 pset in
let plist_old = Propset.to_proplist pset in
let plist_new = Propset.to_proplist pset_new in
plist_new @ plist_old