|
|
@ -257,7 +257,6 @@ module Fml : sig
|
|
|
|
type fml = private
|
|
|
|
type fml = private
|
|
|
|
(* propositional constants *)
|
|
|
|
(* propositional constants *)
|
|
|
|
| Tt
|
|
|
|
| Tt
|
|
|
|
| Ff
|
|
|
|
|
|
|
|
(* equality *)
|
|
|
|
(* equality *)
|
|
|
|
| Eq of trm * trm
|
|
|
|
| Eq of trm * trm
|
|
|
|
| Dq of trm * trm
|
|
|
|
| Dq of trm * trm
|
|
|
@ -279,7 +278,6 @@ module Fml : sig
|
|
|
|
[@@deriving compare, equal, sexp]
|
|
|
|
[@@deriving compare, equal, sexp]
|
|
|
|
|
|
|
|
|
|
|
|
val _Tt : fml
|
|
|
|
val _Tt : fml
|
|
|
|
val _Ff : fml
|
|
|
|
|
|
|
|
val _Eq : trm -> trm -> fml
|
|
|
|
val _Eq : trm -> trm -> fml
|
|
|
|
val _Dq : trm -> trm -> fml
|
|
|
|
val _Dq : trm -> trm -> fml
|
|
|
|
val _Eq0 : trm -> fml
|
|
|
|
val _Eq0 : trm -> fml
|
|
|
@ -297,7 +295,6 @@ module Fml : sig
|
|
|
|
end = struct
|
|
|
|
end = struct
|
|
|
|
type fml =
|
|
|
|
type fml =
|
|
|
|
| Tt
|
|
|
|
| Tt
|
|
|
|
| Ff
|
|
|
|
|
|
|
|
| Eq of trm * trm
|
|
|
|
| Eq of trm * trm
|
|
|
|
| Dq of trm * trm
|
|
|
|
| Dq of trm * trm
|
|
|
|
| Eq0 of trm
|
|
|
|
| Eq0 of trm
|
|
|
@ -323,7 +320,7 @@ end = struct
|
|
|
|
==> [p]. *)
|
|
|
|
==> [p]. *)
|
|
|
|
|
|
|
|
|
|
|
|
let _Tt = Tt
|
|
|
|
let _Tt = Tt
|
|
|
|
let _Ff = Ff
|
|
|
|
let _Ff = Not Tt
|
|
|
|
|
|
|
|
|
|
|
|
(** classification of terms as either semantically equal or disequal, or
|
|
|
|
(** classification of terms as either semantically equal or disequal, or
|
|
|
|
if semantic relationship is unknown, as either syntactically less than
|
|
|
|
if semantic relationship is unknown, as either syntactically less than
|
|
|
@ -343,13 +340,13 @@ end = struct
|
|
|
|
(* 0 = 0 ==> tt *)
|
|
|
|
(* 0 = 0 ==> tt *)
|
|
|
|
| SemEq -> Tt
|
|
|
|
| SemEq -> Tt
|
|
|
|
(* 0 = N ==> ff for N ≢ 0 *)
|
|
|
|
(* 0 = N ==> ff for N ≢ 0 *)
|
|
|
|
| SemDq -> Ff
|
|
|
|
| SemDq -> _Ff
|
|
|
|
| SynLt | SynGt -> Eq0 x
|
|
|
|
| SynLt | SynGt -> Eq0 x
|
|
|
|
|
|
|
|
|
|
|
|
let _Dq0 x =
|
|
|
|
let _Dq0 x =
|
|
|
|
match compare_semantic_syntactic zero x with
|
|
|
|
match compare_semantic_syntactic zero x with
|
|
|
|
(* 0 ≠ 0 ==> ff *)
|
|
|
|
(* 0 ≠ 0 ==> ff *)
|
|
|
|
| SemEq -> Ff
|
|
|
|
| SemEq -> _Ff
|
|
|
|
(* 0 ≠ N ==> tt for N ≢ 0 *)
|
|
|
|
(* 0 ≠ N ==> tt for N ≢ 0 *)
|
|
|
|
| SemDq -> Tt
|
|
|
|
| SemDq -> Tt
|
|
|
|
| SynLt | SynGt -> Dq0 x
|
|
|
|
| SynLt | SynGt -> Dq0 x
|
|
|
@ -360,7 +357,7 @@ end = struct
|
|
|
|
else
|
|
|
|
else
|
|
|
|
match compare_semantic_syntactic x y with
|
|
|
|
match compare_semantic_syntactic x y with
|
|
|
|
| SemEq -> Tt
|
|
|
|
| SemEq -> Tt
|
|
|
|
| SemDq -> Ff
|
|
|
|
| SemDq -> _Ff
|
|
|
|
| SynLt -> Eq (x, y)
|
|
|
|
| SynLt -> Eq (x, y)
|
|
|
|
| SynGt -> Eq (y, x)
|
|
|
|
| SynGt -> Eq (y, x)
|
|
|
|
|
|
|
|
|
|
|
@ -369,26 +366,26 @@ end = struct
|
|
|
|
else if y == zero then _Dq0 x
|
|
|
|
else if y == zero then _Dq0 x
|
|
|
|
else
|
|
|
|
else
|
|
|
|
match compare_semantic_syntactic x y with
|
|
|
|
match compare_semantic_syntactic x y with
|
|
|
|
| SemEq -> Ff
|
|
|
|
| SemEq -> _Ff
|
|
|
|
| SemDq -> Tt
|
|
|
|
| SemDq -> Tt
|
|
|
|
| SynLt -> Dq (x, y)
|
|
|
|
| SynLt -> Dq (x, y)
|
|
|
|
| SynGt -> Dq (y, x)
|
|
|
|
| SynGt -> Dq (y, x)
|
|
|
|
|
|
|
|
|
|
|
|
let _Gt0 = function
|
|
|
|
let _Gt0 = function
|
|
|
|
| Z z -> if Z.gt z Z.zero then Tt else Ff
|
|
|
|
| Z z -> if Z.gt z Z.zero then Tt else _Ff
|
|
|
|
| Q q -> if Q.gt q Q.zero then Tt else Ff
|
|
|
|
| Q q -> if Q.gt q Q.zero then Tt else _Ff
|
|
|
|
| x -> Gt0 x
|
|
|
|
| x -> Gt0 x
|
|
|
|
|
|
|
|
|
|
|
|
let _Le0 = function
|
|
|
|
let _Le0 = function
|
|
|
|
| Z z -> if Z.leq z Z.zero then Tt else Ff
|
|
|
|
| Z z -> if Z.leq z Z.zero then Tt else _Ff
|
|
|
|
| Q q -> if Q.leq q Q.zero then Tt else Ff
|
|
|
|
| Q q -> if Q.leq q Q.zero then Tt else _Ff
|
|
|
|
| x -> Le0 x
|
|
|
|
| x -> Le0 x
|
|
|
|
|
|
|
|
|
|
|
|
let _UPosLit p xs = UPosLit (p, xs)
|
|
|
|
let _UPosLit p xs = UPosLit (p, xs)
|
|
|
|
let _UNegLit p xs = UNegLit (p, xs)
|
|
|
|
let _UNegLit p xs = UNegLit (p, xs)
|
|
|
|
|
|
|
|
|
|
|
|
let rec is_negative = function
|
|
|
|
let rec is_negative = function
|
|
|
|
| Ff | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
|
|
|
|
| Not Tt | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
|
|
|
|
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
|
|
|
|
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
|
|
|
|
false
|
|
|
|
false
|
|
|
|
| Not p -> not (is_negative p)
|
|
|
|
| Not p -> not (is_negative p)
|
|
|
@ -397,7 +394,7 @@ end = struct
|
|
|
|
|
|
|
|
|
|
|
|
let rec equal_or_opposite p q =
|
|
|
|
let rec equal_or_opposite p q =
|
|
|
|
match (p, q) with
|
|
|
|
match (p, q) with
|
|
|
|
| Tt, Ff | Ff, Tt -> Opposite
|
|
|
|
| p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown
|
|
|
|
| Eq (a, b), Dq (a', b') | Dq (a, b), Eq (a', b') ->
|
|
|
|
| Eq (a, b), Dq (a', b') | Dq (a, b), Eq (a', b') ->
|
|
|
|
if equal_trm a a' && equal_trm b b' then Opposite else Unknown
|
|
|
|
if equal_trm a a' && equal_trm b b' then Opposite else Unknown
|
|
|
|
| Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' ->
|
|
|
|
| Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' ->
|
|
|
@ -430,18 +427,18 @@ end = struct
|
|
|
|
let _And p q =
|
|
|
|
let _And p q =
|
|
|
|
match (p, q) with
|
|
|
|
match (p, q) with
|
|
|
|
| Tt, p | p, Tt -> p
|
|
|
|
| Tt, p | p, Tt -> p
|
|
|
|
| Ff, _ | _, Ff -> Ff
|
|
|
|
| Not Tt, _ | _, Not Tt -> _Ff
|
|
|
|
| _ -> (
|
|
|
|
| _ -> (
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
| Equal -> p
|
|
|
|
| Equal -> p
|
|
|
|
| Opposite -> Ff
|
|
|
|
| Opposite -> _Ff
|
|
|
|
| Unknown ->
|
|
|
|
| Unknown ->
|
|
|
|
let p, q = sort_fml p q in
|
|
|
|
let p, q = sort_fml p q in
|
|
|
|
And (p, q) )
|
|
|
|
And (p, q) )
|
|
|
|
|
|
|
|
|
|
|
|
let _Or p q =
|
|
|
|
let _Or p q =
|
|
|
|
match (p, q) with
|
|
|
|
match (p, q) with
|
|
|
|
| Ff, p | p, Ff -> p
|
|
|
|
| Not Tt, p | p, Not Tt -> p
|
|
|
|
| Tt, _ | _, Tt -> Tt
|
|
|
|
| Tt, _ | _, Tt -> Tt
|
|
|
|
| _ -> (
|
|
|
|
| _ -> (
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
match equal_or_opposite p q with
|
|
|
@ -454,11 +451,11 @@ end = struct
|
|
|
|
let rec _Iff p q =
|
|
|
|
let rec _Iff p q =
|
|
|
|
match (p, q) with
|
|
|
|
match (p, q) with
|
|
|
|
| Tt, p | p, Tt -> p
|
|
|
|
| Tt, p | p, Tt -> p
|
|
|
|
| Ff, p | p, Ff -> _Not p
|
|
|
|
| Not Tt, p | p, Not Tt -> _Not p
|
|
|
|
| _ -> (
|
|
|
|
| _ -> (
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
| Equal -> Tt
|
|
|
|
| Equal -> Tt
|
|
|
|
| Opposite -> Ff
|
|
|
|
| Opposite -> _Ff
|
|
|
|
| Unknown ->
|
|
|
|
| Unknown ->
|
|
|
|
let p, q = sort_fml p q in
|
|
|
|
let p, q = sort_fml p q in
|
|
|
|
Iff (p, q) )
|
|
|
|
Iff (p, q) )
|
|
|
@ -466,18 +463,16 @@ end = struct
|
|
|
|
and _Xor p q =
|
|
|
|
and _Xor p q =
|
|
|
|
match (p, q) with
|
|
|
|
match (p, q) with
|
|
|
|
| Tt, p | p, Tt -> _Not p
|
|
|
|
| Tt, p | p, Tt -> _Not p
|
|
|
|
| Ff, p | p, Ff -> p
|
|
|
|
| Not Tt, p | p, Not Tt -> p
|
|
|
|
| _ -> (
|
|
|
|
| _ -> (
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
match equal_or_opposite p q with
|
|
|
|
| Equal -> Ff
|
|
|
|
| Equal -> _Ff
|
|
|
|
| Opposite -> Tt
|
|
|
|
| Opposite -> Tt
|
|
|
|
| Unknown ->
|
|
|
|
| Unknown ->
|
|
|
|
let p, q = sort_fml p q in
|
|
|
|
let p, q = sort_fml p q in
|
|
|
|
Xor (p, q) )
|
|
|
|
Xor (p, q) )
|
|
|
|
|
|
|
|
|
|
|
|
and _Not = function
|
|
|
|
and _Not = function
|
|
|
|
| Tt -> _Ff
|
|
|
|
|
|
|
|
| Ff -> _Tt
|
|
|
|
|
|
|
|
| Eq (x, y) -> _Dq x y
|
|
|
|
| Eq (x, y) -> _Dq x y
|
|
|
|
| Dq (x, y) -> _Eq x y
|
|
|
|
| Dq (x, y) -> _Eq x y
|
|
|
|
| Eq0 x -> _Dq0 x
|
|
|
|
| Eq0 x -> _Dq0 x
|
|
|
@ -492,21 +487,22 @@ end = struct
|
|
|
|
| Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg)
|
|
|
|
| Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg)
|
|
|
|
| UPosLit (p, xs) -> _UNegLit p xs
|
|
|
|
| UPosLit (p, xs) -> _UNegLit p xs
|
|
|
|
| UNegLit (p, xs) -> _UPosLit p xs
|
|
|
|
| UNegLit (p, xs) -> _UPosLit p xs
|
|
|
|
|
|
|
|
| Tt as x -> Not x
|
|
|
|
|
|
|
|
|
|
|
|
and _Cond cnd pos neg =
|
|
|
|
and _Cond cnd pos neg =
|
|
|
|
match (cnd, pos, neg) with
|
|
|
|
match (cnd, pos, neg) with
|
|
|
|
(* (tt ? p : n) ==> p *)
|
|
|
|
(* (tt ? p : n) ==> p *)
|
|
|
|
| Tt, _, _ -> pos
|
|
|
|
| Tt, _, _ -> pos
|
|
|
|
(* (ff ? p : n) ==> n *)
|
|
|
|
(* (ff ? p : n) ==> n *)
|
|
|
|
| Ff, _, _ -> neg
|
|
|
|
| Not Tt, _, _ -> neg
|
|
|
|
(* (c ? tt : ff) ==> c *)
|
|
|
|
(* (c ? tt : ff) ==> c *)
|
|
|
|
| _, Tt, Ff -> cnd
|
|
|
|
| _, Tt, Not Tt -> cnd
|
|
|
|
(* (c ? ff : tt) ==> ¬c *)
|
|
|
|
(* (c ? ff : tt) ==> ¬c *)
|
|
|
|
| _, Ff, Tt -> _Not cnd
|
|
|
|
| _, Not Tt, Tt -> _Not cnd
|
|
|
|
(* (c ? p : ff) ==> c ∧ p *)
|
|
|
|
(* (c ? p : ff) ==> c ∧ p *)
|
|
|
|
| _, _, Ff -> _And cnd pos
|
|
|
|
| _, _, Not Tt -> _And cnd pos
|
|
|
|
(* (c ? ff : n) ==> ¬c ∧ n *)
|
|
|
|
(* (c ? ff : n) ==> ¬c ∧ n *)
|
|
|
|
| _, Ff, _ -> _And (_Not cnd) neg
|
|
|
|
| _, Not Tt, _ -> _And (_Not cnd) neg
|
|
|
|
(* (c ? tt : n) ==> c ∨ n *)
|
|
|
|
(* (c ? tt : n) ==> c ∨ n *)
|
|
|
|
| _, Tt, _ -> _Or cnd neg
|
|
|
|
| _, Tt, _ -> _Or cnd neg
|
|
|
|
(* (c ? p : tt) ==> ¬c ∨ p *)
|
|
|
|
(* (c ? p : tt) ==> ¬c ∨ p *)
|
|
|
@ -556,7 +552,7 @@ let ppx_f strength fs fml =
|
|
|
|
let pf fmt = pp_boxed fs fmt in
|
|
|
|
let pf fmt = pp_boxed fs fmt in
|
|
|
|
match (fml : fml) with
|
|
|
|
match (fml : fml) with
|
|
|
|
| Tt -> pf "tt"
|
|
|
|
| Tt -> pf "tt"
|
|
|
|
| Ff -> pf "ff"
|
|
|
|
| Not Tt -> pf "ff"
|
|
|
|
| Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y
|
|
|
|
| Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y
|
|
|
|
| Dq (x, y) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
|
|
|
|
| Dq (x, y) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
|
|
|
|
| Eq0 x -> pf "(0 = %a)" pp_t x
|
|
|
|
| Eq0 x -> pf "(0 = %a)" pp_t x
|
|
|
@ -616,7 +612,7 @@ let rec fold_vars_t e ~init ~f =
|
|
|
|
|
|
|
|
|
|
|
|
let rec fold_vars_f ~init p ~f =
|
|
|
|
let rec fold_vars_f ~init p ~f =
|
|
|
|
match (p : fml) with
|
|
|
|
match (p : fml) with
|
|
|
|
| Tt | Ff -> init
|
|
|
|
| Tt -> init
|
|
|
|
| Eq (x, y) | Dq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
|
|
|
|
| Eq (x, y) | Dq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
|
|
|
|
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init
|
|
|
|
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init
|
|
|
|
| Not x -> fold_vars_f ~f x ~init
|
|
|
|
| Not x -> fold_vars_f ~f x ~init
|
|
|
@ -664,7 +660,7 @@ let mapN f e cons xs =
|
|
|
|
|
|
|
|
|
|
|
|
let rec map_trms_f ~f b =
|
|
|
|
let rec map_trms_f ~f b =
|
|
|
|
match b with
|
|
|
|
match b with
|
|
|
|
| Tt | Ff -> b
|
|
|
|
| Tt -> b
|
|
|
|
| Eq (x, y) -> map2 f b _Eq x y
|
|
|
|
| Eq (x, y) -> map2 f b _Eq x y
|
|
|
|
| Dq (x, y) -> map2 f b _Dq x y
|
|
|
|
| Dq (x, y) -> map2 f b _Dq x y
|
|
|
|
| Eq0 x -> map1 f b _Eq0 x
|
|
|
|
| Eq0 x -> map1 f b _Eq0 x
|
|
|
@ -971,7 +967,7 @@ module Formula = struct
|
|
|
|
(* constants *)
|
|
|
|
(* constants *)
|
|
|
|
|
|
|
|
|
|
|
|
let tt = _Tt
|
|
|
|
let tt = _Tt
|
|
|
|
let ff = _Ff
|
|
|
|
let ff = _Not tt
|
|
|
|
|
|
|
|
|
|
|
|
(* comparisons *)
|
|
|
|
(* comparisons *)
|
|
|
|
|
|
|
|
|
|
|
@ -1039,7 +1035,7 @@ module Formula = struct
|
|
|
|
mapN f b (apNf cons) (Array.map ~f:(fun x -> `Trm x) xs)
|
|
|
|
mapN f b (apNf cons) (Array.map ~f:(fun x -> `Trm x) xs)
|
|
|
|
in
|
|
|
|
in
|
|
|
|
match b with
|
|
|
|
match b with
|
|
|
|
| Tt | Ff -> b
|
|
|
|
| Tt -> b
|
|
|
|
| Eq (x, y) -> lift_map2 f b _Eq x y
|
|
|
|
| Eq (x, y) -> lift_map2 f b _Eq x y
|
|
|
|
| Dq (x, y) -> lift_map2 f b _Dq x y
|
|
|
|
| Dq (x, y) -> lift_map2 f b _Dq x y
|
|
|
|
| Eq0 x -> lift_map1 f b _Eq0 x
|
|
|
|
| Eq0 x -> lift_map1 f b _Eq0 x
|
|
|
@ -1077,8 +1073,8 @@ module Formula = struct
|
|
|
|
fun ~meet1 ~join1 ~top ~bot fml ->
|
|
|
|
fun ~meet1 ~join1 ~top ~bot fml ->
|
|
|
|
let rec add_conjunct (cjn, splits) fml =
|
|
|
|
let rec add_conjunct (cjn, splits) fml =
|
|
|
|
match fml with
|
|
|
|
match fml with
|
|
|
|
| Tt | Ff | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _
|
|
|
|
| Tt | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _
|
|
|
|
|Xor _ | UPosLit _ | UNegLit _ | Not _ ->
|
|
|
|
|UPosLit _ | UNegLit _ | Not _ ->
|
|
|
|
(meet1 fml cjn, splits)
|
|
|
|
(meet1 fml cjn, splits)
|
|
|
|
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
|
|
|
|
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
|
|
|
|
| Or (p, q) -> (cjn, [p; q] :: splits)
|
|
|
|
| Or (p, q) -> (cjn, [p; q] :: splits)
|
|
|
@ -1150,7 +1146,7 @@ and t_to_ses : trm -> Ses.Term.t = function
|
|
|
|
|
|
|
|
|
|
|
|
let rec f_to_ses : fml -> Ses.Term.t = function
|
|
|
|
let rec f_to_ses : fml -> Ses.Term.t = function
|
|
|
|
| Tt -> Ses.Term.true_
|
|
|
|
| Tt -> Ses.Term.true_
|
|
|
|
| Ff -> Ses.Term.false_
|
|
|
|
| Not Tt -> Ses.Term.false_
|
|
|
|
| Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y)
|
|
|
|
| Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y)
|
|
|
|
| Dq (x, y) -> Ses.Term.dq (t_to_ses x) (t_to_ses y)
|
|
|
|
| Dq (x, y) -> Ses.Term.dq (t_to_ses x) (t_to_ses y)
|
|
|
|
| Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x)
|
|
|
|
| Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x)
|
|
|
|