@ -38,10 +38,13 @@ module type QueueS = sig
val add : elt -> t -> t
(* * add an element *)
val pop : t -> ( elt * elt list * t ) option
(* * [pop q] is [None] if [q] is empty and otherwise is [Some ( e, es, q' ) ]
where [ e ] is the selected element in [ q ] , any elements [ es ] have the
same destination as [ e ] , and [ q' ] is [ q ] without [ e ] and [ es ] . * )
val top : t -> ( elt * elt list * t ) option
(* * [top q] is [None] if [q] is empty and otherwise is [Some ( e, es, q' ) ]
where [ e ] is the selected element in [ q ] and any elements [ es ] have
the same destination as [ e ] . [ q' ] is equivalent to [ q ] but possibly
more compactly represented . * )
val remove : elt -> elt list -> t -> t
end
(* * Type of a queue implementation, which is parameterized over elements. *)
@ -71,18 +74,26 @@ module PriorityQueue (Elt : Elt) : QueueS with type elt = Elt.t = struct
if removed' = = removed then { queue = FHeap . add queue elt ; removed }
else { queue ; removed = removed' }
let rec pop { queue ; removed } =
let * top , queue = FHeap . pop queue in
let removed' = Elts . remove top removed in
if removed' != removed then pop { queue ; removed = removed' }
let rec top { queue ; removed } =
let * next = FHeap . top queue in
let removed' = Elts . remove next removed in
if removed' != removed then
let queue' = FHeap . remove_top_exn queue in
top { queue = queue' ; removed = removed' }
else
let elts , removed =
FHeap . fold queue ~ init : ( [] , removed' ) ~ f : ( fun ( elts , removed ) elt ->
if Elt . equal_destination top elt && not ( Elts . mem elt removed )
then ( elt :: elts , Elts . add elt removed )
else ( elts , removed ) )
let elts =
FHeap . fold queue ~ init : [] ~ f : ( fun elts elt ->
if Elt . equal_destination nex t elt && not ( Elts . mem elt removed )
then elt :: elts
else elts )
in
Some ( top , elts , { queue ; removed } )
Some ( next , elts , { queue ; removed } )
let remove top elts { queue ; removed } =
assert ( Elt . equal top ( FHeap . top_exn queue ) ) ;
let queue = FHeap . remove_top_exn queue in
let removed = Elts . add_list elts removed in
{ queue ; removed }
end
module RandomQueue ( Elt : Elt ) : QueueS with type elt = Elt . t = struct
@ -190,7 +201,7 @@ module RandomQueue (Elt : Elt) : QueueS with type elt = Elt.t = struct
/. Float . of_int elt_weight
; last = Add_or_pop_frontier }
let pop q =
let _ pop q =
let num_recent = RAL . length q . recent in
if num_recent > 0 then
let elt , recent =
@ -230,13 +241,15 @@ module RandomQueue (Elt : Elt) : QueueS with type elt = Elt.t = struct
~ finish : ( fun _ ->
assert ( M . is_empty q . frontier ) ;
None )
let top _ = todo " concurrent sampling analysis " ()
let remove _ = todo " concurrent sampling analysis " ()
end
module Make ( Config : Config ) ( D : Domain ) ( Queue : Queue ) = struct
module Stack : sig
type t
val pp : t pp
val empty : t
val push_call : Llair . func Llair . call -> D . from_call -> t -> t
val pop_return : t -> ( D . from_call * Llair . jump * t ) option
@ -341,43 +354,150 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
let equal_as_inlined_location = [ % compare . equal : as_inlined_location ]
end
(* * Instruction Pointer. Functions are treated as-if-inlined by including
a call stack in each instruction pointer , effectively copying the
control - flow graph for each calling context . * )
type ip = { ip : Llair . IP . t ; stk : Stack . t }
(* * Instruction Pointer, of a single thread so includes thread id.
Functions are treated as - if - inlined by including a call stack in each
instruction pointer , effectively copying the control - flow graph for
each calling context . * )
type ip = { ip : Llair . IP . t ; stk : Stack . t ; tid : ThreadID . t }
(* * Instruction Pointer *)
(* * Instruction Pointer of a single thread *)
module IP : sig
type t = ip [ @@ deriving compare , equal , sexp_of ]
val pp : t pp
end = struct
type t = ip = { ip : Llair . IP . t ; stk : Stack . as_inlined_location }
type t = ip =
{ ip : Llair . IP . t ; stk : Stack . as_inlined_location ; tid : ThreadID . t }
[ @@ deriving compare , equal , sexp_of ]
let pp ppf { ip } = Llair . IP . pp ppf ip
end
(* * A control-flow transition. An edge from block [src] to
[ dst = { ip ; stk } ] represents a transition with call stack [ stk ] from
( the terminator of ) block [ src ] to the instruction pointer [ ip ] . * )
type edge = { dst : IP . t ; src : Llair . Block . t } [ @@ deriving sexp_of ]
(* * Representation of a single thread, including identity and scheduling
state * )
module Thread : sig
type t = Runnable of IP . t | Terminated of ThreadID . t
[ @@ deriving equal , sexp_of ]
val compare : t Ord . t
val compare_without_tid : t Ord . t
val pp : t pp
val id : t -> ThreadID . t
end = struct
(* * Because [ip] needs to include [tid], this is represented as a sum of
products , but it may be more natural to think in terms of the
isomorphic representation using a product of a sum such as
[ ( Runnable of .. . | Terminated . . . ) * ThreadID . t ] . * )
type t = Runnable of IP . t | Terminated of ThreadID . t
[ @@ deriving sexp_of ]
let pp ppf = function
| Runnable ip -> IP . pp ppf ip
| Terminated tid -> Format . fprintf ppf " T%i " tid
let id = function Runnable { tid } -> tid | Terminated tid -> tid
(* Note: Threads.inactive relies on comparing tid last *)
let compare_aux compare_tid x y =
let open Ord . Infix in
if x = = y then 0
else
match ( x , y ) with
| Runnable x , Runnable y ->
Llair . IP . compare x . ip y . ip
< ? > ( Stack . compare_as_inlined_location , x . stk , y . stk )
< ? > ( compare_tid , x . tid , y . tid )
| Runnable _ , _ -> - 1
| _ , Runnable _ -> 1
| Terminated x_tid , Terminated y_tid -> compare_tid x_tid y_tid
let compare = compare_aux ThreadID . compare
let equal = [ % compare . equal : t ]
let compare_without_tid = compare_aux ( fun _ _ -> 0 )
end
(* * Set of threads *)
module Threads : sig
type t [ @@ deriving compare , equal , sexp_of ]
type inactive [ @@ deriving sexp_of ]
val compare_inactive : inactive Ord . t
val compare_inactive_tids : inactive Ord . t
val init : t
val create : Llair . block -> t -> ThreadID . t * t
val after_step : Thread . t -> t -> t * inactive
val join : ThreadID . t -> t -> t option
val fold : t -> ' s -> f : ( Thread . t -> ' s -> ' s ) -> ' s
end = struct
module M = Map . Make ( ThreadID )
type t = Thread . t M . t [ @@ deriving compare , equal , sexp_of ]
type inactive = Thread . t array [ @@ deriving sexp_of ]
let compare_inactive = Ord . array Thread . compare_without_tid
let compare_inactive_tids = Ord . ( array ( ThreadID . compare > | = Thread . id ) )
let inactive active_id threads =
let a = Iter . to_array ( M . values ( M . remove active_id threads ) ) in
Array . sort ~ cmp : Thread . compare a ;
a
let init = M . empty
let fold threads s ~ f =
M . fold threads s ~ f : ( fun ~ key : _ ~ data s -> f data s )
let create entry threads =
let ip = Llair . IP . mk entry in
let max_tid =
match M . max_binding threads with
| Some ( tid , _ ) -> tid
| None -> ThreadID . init
in
let tid = max_tid + 1 in
let thread = Thread . Runnable { ip ; stk = Stack . empty ; tid } in
( tid , M . add ~ key : tid ~ data : thread threads )
let after_step active threads =
let tid = Thread . id active in
let inactive = inactive tid threads in
let threads = M . add ~ key : tid ~ data : active threads in
( threads , inactive )
let join tid threads =
match M . find tid threads with
| Some ( Thread . Terminated _ ) -> Some ( M . remove tid threads )
| _ -> None
end
(* * A control-flow transition of a single thread. In the common case an
edge from block [ src ] to [ dst = Runnable { ip ; stk ; tid } ] represents a
transition by thread [ tid ] with call stack [ stk ] from ( usually the
terminator of ) block [ src ] to the instruction pointer [ ip ] . If a
scheduling point is encountered within a block , the represented
transition need not originate from the terminator of [ src ] . Edges can
also represent transitions that produce threads in non - [ Runnable ]
scheduling states , determined by the form of [ dst ] . * )
type edge = { dst : Thread . t ; src : Llair . Block . t } [ @@ deriving sexp_of ]
module Edge = struct
type t = edge [ @@ deriving sexp_of ]
let pp fs { dst ; src = { sort_index ; lbl } } =
Format . fprintf fs " %a <-- #%i %%%s " IP . pp dst sort_index lbl
Format . fprintf fs " %a <-t%i- #%i %%%s " Thread . pp dst ( Thread . id dst )
sort_index lbl
(* * Each retreating edge has a depth for each calling context, except
for recursive calls . Recursive call edges are instead compared
without considering their stacks . Bounding the depth of edges
therefore has the effect of bounding the number of recursive calls
in any calling context . * )
let compare x y =
let compare _aux compare_tid x y =
let open Ord . Infix in
if x = = y then 0
else
match ( x , y ) with
| { dst = Runnable x_t } , { dst = Runnable y_t } ->
let is_rec_call = function
| { Llair . term = Call { recursive = true } } -> true
| _ -> false
@ -386,11 +506,18 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
if is_rec_call x . src then 0
else Stack . compare_as_inlined_location stk1 stk2
in
Llair . IP . compare x . dst . ip y . ds t. ip
Llair . IP . compare x _t. ip y_ t. ip
< ? > ( Llair . Block . compare , x . src , y . src )
< ? > ( compare_stk , x . dst . stk , y . dst . stk )
< ? > ( compare_stk , x_t . stk , y_t . stk )
< ? > ( compare_tid , x_t . tid , y_t . tid )
| { dst = Runnable _ } , _ -> - 1
| _ , { dst = Runnable _ } -> 1
| { dst = Terminated x_tid } , { dst = Terminated y_tid } ->
Llair . Block . compare x . src y . src < ? > ( compare_tid , x_tid , y_tid )
let compare = compare_aux ThreadID . compare
let equal = [ % compare . equal : t ]
let compare_without_tid = compare_aux ( fun _ _ -> 0 )
end
module Depths = struct
@ -408,19 +535,24 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
| ` Both ( d1 , d2 ) -> Some ( Int . max d1 d2 ) )
end
type switches = int [ @@ deriving compare , equal , sexp_of ]
(* * Abstract memory, control, and history state, with a slot used for the
current " control position " , such as an instruction pointer . Consists
of a symbolic [ state ] , plus a coarse abstraction of the preceding
execution history in the form of [ depths ] representing the number of
times retreating edges have been crossed . * )
of a symbolic [ state ] and a scheduling state of the [ threads ] , plus a
coarse abstraction of the preceding execution history in the form of
the number of context [ switches ] and [ depths ] representing the number
of times retreating edges have been crossed . * )
type ' a memory_control_history =
{ ctrl : ' a (* * current control position *)
; state : D . t (* * symbolic memory and register state *)
; threads : Threads . t (* * scheduling state of the threads *)
; switches : switches (* * count of preceding context switches *)
; depths : Depths . t (* * count of retreating edge crossings *) }
[ @@ deriving sexp_of ]
(* * An abstract machine state consists of the instruction pointer plus the
memory, control , and history state . * )
(* * An abstract machine state consists of the instruction pointer of the
active thread plus the memory, control , and history state . * )
type ams = IP . t memory_control_history [ @@ deriving sexp_of ]
(* * A unit of analysis work is an abstract machine state from which
@ -429,14 +561,19 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
type work = edge memory_control_history
(* * An element of the frontier of execution is a control-flow [edge] that
has been executed , yielding a memory , control , and history state . * )
has been executed by the thread [ Thread . id edge . dst ] , yielding a
memory , control , and history state . The [ threads ] indicates the
scheduling state of the point after the transition indicated by the
edge . * )
type elt = elt_ctrl memory_control_history [ @@ deriving sexp_of ]
and elt_ctrl =
{ edge : Edge . t
; depth : int
(* * pre-computed depth of [edge], for use by e.g. [Elt.compare] *)
}
; inactive : Threads . inactive
(* * pre-computed summary of inactive thread scheduling states, for
use by e . g . [ Elt . compare ] * ) }
module Work : sig
type t
@ -450,30 +587,49 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
module Elt = struct
type t = elt [ @@ deriving sexp_of ]
let pp ppf { ctrl = { edge ; depth } } =
Format . fprintf ppf " %i : %a" depth Edge . pp edge
let pp ppf { ctrl = { edge ; depth } ; switches } =
Format . fprintf ppf " %i ,%i : %a" switches depth Edge . pp edge
let compare x y =
let open Ord . Infix in
if x = = y then 0
else
( ( Int . compare > | = fun x -> x . ctrl . depth )
@? ( Edge . compare > | = fun x -> x . ctrl . edge )
( ( Int . compare > | = fun x -> x . switches )
@? ( Int . compare > | = fun x -> x . ctrl . depth )
@? ( Edge . compare_without_tid > | = fun x -> x . ctrl . edge )
@? ( Threads . compare_inactive > | = fun x -> x . ctrl . inactive )
@? ( ThreadID . compare > | = fun x -> Thread . id x . ctrl . edge . dst )
@? ( Threads . compare_inactive_tids > | = fun x -> x . ctrl . inactive )
@? ( Depths . compare > | = fun x -> x . depths )
@? ( D . compare > | = fun x -> x . state ) )
x y
let equal = [ % compare . equal : t ]
let equal_destination x y = IP. equal x . ctrl . edge . dst y . ctrl . edge . dst
let equal_destination x y = Threads. equal x . threads y . threads
let dnf x = List . map ~ f : ( fun state -> { x with state } ) ( D . dnf x . state )
end
module Queue = Queue ( Elt )
(* * State and history projection of abstract machine states.
[ StateHistory ] represents the subset of [ ams ] fields that can be
joined across several executions . * )
module StateHistory = struct
(* * Concurrent state and history projection of abstract machine states.
Abstract machine states with the same [ switches ] , [ ip ] , and
[ threads ] fields have , as far as the scheduler is concerned , the
same concurrent state and history and can be joined . * )
module ConcSH = struct
module T = struct
type t = switches * IP . t * Threads . t
[ @@ deriving compare , equal , sexp_of ]
end
include T
module Map = Map . Make ( T )
end
(* * Sequential state and history projection of abstract machine states.
Complementary to [ ConcSH ] , [ SeqSH ] represents the subset of [ ams ]
fields that can be joined across several executions that share the
same abstract concurrent state and history . * )
module SeqSH = struct
module T = struct
type t = D . t * Depths . t [ @@ deriving compare , equal , sexp_of ]
end
@ -494,29 +650,62 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
( D . joinN states , depths )
end
(* * Sequential states indexed by concurrent states. When sequential
states and histories are joined across executions that reach the
same abstract concurrent state and history , there are multiple
successor executions corresponding to which thread is selected to
execute . Executing some such successors can lead to additional
executions that reach the original abstract concurrent state and
history . These new executions also need to be joined with the old
ones . To handle this , the successors of a join are enumerated
lazily , returning them one - by - one from the scheduler and adding them
to the analysis worklist . The " cursor " that maintains the current
progress of this enumeration is a set of sequential states that is
indexed by concurrent states . * )
module Cursor = struct
type t = SeqSH . Set . t ConcSH . Map . t
let empty = ConcSH . Map . empty
let add = ConcSH . Map . add
let find = ConcSH . Map . find
end
(* * Analysis exploration state *)
type t = Queue . t
type t = Queue . t * Cursor . t
let prune depth { ctrl = edge } wl =
[ % Trace . info " %i: %a " depth Edge . pp edge ] ;
Report . hit_bound Config . bound ;
wl
let enqueue depth ( { ctrl = edge ; depths } as elt ) queue =
[ % Trace . info " %i: %a@ | %a " depth Edge . pp edge Queue . pp queue ] ;
let enqueue depth ( { ctrl = { dst } as edge ; threads ; depths } as elt )
( queue , cursor ) =
[ % Trace . info
" %i,%i: %a@ | %a " elt . switches depth Edge . pp edge Queue . pp queue ] ;
let depths = Depths . add ~ key : edge ~ data : depth depths in
let queue = Queue . add { elt with ctrl = { edge ; depth } ; depths } queue in
let threads , inactive = Threads . after_step dst threads in
let queue =
Queue . add
{ elt with ctrl = { edge ; depth ; inactive } ; threads ; depths }
queue
in
( queue , cursor )
let init state curr =
let depth = 0 in
let ip = Llair . IP . mk curr in
let stk = Stack . empty in
let prev = curr in
let edge = { dst = { ip ; stk } ; src = prev } in
let tid = ThreadID . init in
let edge = { dst = Runnable { ip ; stk ; tid } ; src = prev } in
let threads = Threads . init in
let switches = 0 in
let depths = Depths . empty in
let queue = Queue . create () in
enqueue depth { ctrl = edge ; state ; depths } queue
let cursor = Cursor . empty in
enqueue depth
{ ctrl = edge ; state ; threads ; switches ; depths }
( queue , cursor )
let add ~ retreating ( { ctrl = edge ; depths } as elt ) wl =
let depth = Option . value ( Depths . find edge depths ) ~ default : 0 in
@ -524,21 +713,73 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
if depth > Config . bound && Config . bound > = 0 then prune depth elt wl
else enqueue depth elt wl
let dequeue queue =
let + ( { ctrl = { edge = { dst } } ; state ; depths } as top ) , elts , queue =
Queue . pop queue
module Succs = struct
module M = ConcSH . Map
let empty = M . empty
let add = M . add_multi
let find_first m ~ f =
let exception Stop in
let found = ref None in
let hit_end = ref true in
( try
M . iteri m ~ f : ( fun ~ key ~ data ->
match ! found with
| None -> (
match f ~ key ~ data with
| None -> ()
| Some r -> found := Some r )
| Some _ ->
hit_end := false ;
raise_notrace Stop )
with Stop -> () ) ;
( ! found , ! hit_end )
end
let rec dequeue ( queue , cursor ) =
let * ( { threads } as top ) , elts , queue = Queue . top queue in
let succs =
List . fold ( top :: elts ) Succs . empty ~ f : ( fun incoming succs ->
let { ctrl = { edge = { dst } } ; state ; switches ; depths } = incoming in
let incoming_tid = Thread . id dst in
Threads . fold threads succs ~ f : ( fun active succs ->
match active with
| Terminated _ -> succs
| Runnable ( { tid } as ip ) ->
let switches =
if tid = incoming_tid then switches else switches + 1
in
[ % Trace . info
" %i: %a [%a]@ | %a " top . ctrl . depth Edge . pp top . ctrl . edge Stack . pp
dst . stk Queue . pp queue ] ;
let state , depths =
StateHistory . join
( List . fold
~ f : ( fun { state ; depths } -> StateHistory . Set . add ( state , depths ) )
elts
( StateHistory . Set . of_ ( state , depths ) ) )
Succs . add ~ key : ( switches , ip , threads )
~ data : ( state , depths ) succs ) )
in
let found , hit_end =
Succs . find_first succs
~ f : ( fun ~ key : ( switches , ip , threads ) ~ data : incoming ->
let next = ( switches , ip , threads ) in
let curr = SeqSH . Set . of_list incoming in
let + next_states =
match Cursor . find next cursor with
| Some already_done ->
let next_states = SeqSH . Set . diff curr already_done in
if SeqSH . Set . is_empty next_states then None
else Some next_states
| None -> Some curr
in
( next
, next_states
, Cursor . add ~ key : next ~ data : next_states cursor ) )
in
( { ctrl = dst ; state ; depths } , queue )
let queue = if hit_end then Queue . remove top elts queue else queue in
match found with
| Some ( ( switches , ip , threads ) , next_states , cursor ) ->
[ % Trace . info
" %i,%i: %a@ | %a " switches top . ctrl . depth Edge . pp top . ctrl . edge
Queue . pp queue ] ;
let state , depths = SeqSH . join next_states in
Some
( { ctrl = ip ; state ; threads ; switches ; depths } , ( queue , cursor ) )
| None -> dequeue ( queue , cursor )
let rec run ~ f wl =
match dequeue wl with
@ -556,30 +797,31 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
( List . pp " @, " D . pp_summary )
data ) ) ]
let exec_jump jump ( { ctrl = { ip ; stk }} as ams ) wl =
let exec_jump jump ( { ctrl = { ip ; stk ; tid }} as ams ) wl =
let src = Llair . IP . block ip in
let { Llair . dst ; retreating } = jump in
let ip = Llair . IP . mk dst in
let edge = { dst = { ip ; stk } ; src } in
let edge = { dst = Runnable { ip ; stk ; tid } ; src } in
Work . add ~ retreating { ams with ctrl = edge } wl
let exec_skip_func areturn return ( { ctrl = { ip }; state } as ams ) wl =
let exec_skip_func areturn return ( { ctrl = { ip ; tid }; state } as ams ) wl =
Report . unknown_call ( Llair . IP . block ip ) . term ;
let state = Option . fold ~ f : D . exec_kill areturn state in
let state = Option . fold ~ f : ( D . exec_kill tid ) areturn state in
exec_jump return { ams with state } wl
let exec_call globals call ( { ctrl = { stk }; state } as ams ) wl =
let exec_call globals call ( { ctrl = { stk ; tid }; state } as ams ) wl =
let Llair . { callee ; actuals ; areturn ; return ; recursive } = call in
let Llair . { name ; formals ; freturn ; locals ; entry } = callee in
[ % Trace . call fun { pf } ->
pf " @[<2>@ %a from %a with state@]@;<1 2>%a " Llair . Func . pp_call call
Llair . Function . pp return . dst . parent . name D . pp state ]
pf " t%i@[<2>@ %a from %a with state@]@;<1 2>%a " tid
Llair . Func . pp_call call Llair . Function . pp return . dst . parent . name
D . pp state ]
;
let dnf_states =
if Config . function_summaries then D . dnf state else [ state ]
in
let domain_call =
D . call ~ globals ~ actuals ~ areturn ~ formals ~ freturn ~ locals
D . call tid ~ globals ~ actuals ~ areturn ~ formals ~ freturn ~ locals
in
List . fold dnf_states wl ~ f : ( fun state wl ->
match
@ -596,7 +838,7 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
let ip = Llair . IP . mk entry in
let stk = Stack . push_call call from_call stk in
let src = Llair . IP . block ams . ctrl . ip in
let edge = { dst = { ip ; stk } ; src } in
let edge = { dst = Runnable { ip ; stk ; tid } ; src } in
Work . add ~ retreating : recursive { ams with ctrl = edge ; state } wl
| Some post -> exec_jump return { ams with state = post } wl )
| >
@ -610,17 +852,17 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
let globals = Domain_used_globals . by_function Config . globals name in
exec_call globals call ams wl
let exec_return exp ( { ctrl = { ip ; stk }; state } as ams ) wl =
let exec_return exp ( { ctrl = { ip ; stk ; tid }; state } as ams ) wl =
let block = Llair . IP . block ip in
let func = block . parent in
let Llair . { name ; formals ; freturn ; locals } = func in
[ % Trace . call fun { pf } -> pf " @ from: %a" Llair . Function . pp name ]
[ % Trace . call fun { pf } -> pf " t%i @ from: %a" tid Llair . Function . pp name ]
;
let summarize post_state =
if not Config . function_summaries then post_state
else
let function_summary , post_state =
D . create_summary ~ locals ~ formals post_state
D . create_summary tid ~ locals ~ formals post_state
in
Llair . Function . Tbl . add_multi ~ key : name ~ data : function_summary
summary_table ;
@ -631,40 +873,45 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
let exit_state =
match ( freturn , exp ) with
| Some freturn , Some return_val ->
D . exec_move ( IArray . of_ ( freturn , return_val ) ) pre_state
D . exec_move tid ( IArray . of_ ( freturn , return_val ) ) pre_state
| None , None -> pre_state
| _ -> violates Llair . Func . invariant func
in
( match Stack . pop_return stk with
| Some ( from_call , retn_site , stk ) ->
let post_state = summarize ( D . post locals from_call exit_state ) in
let retn_state = D . retn formals freturn from_call post_state in
let post_state =
summarize ( D . post tid locals from_call exit_state )
in
let retn_state = D . retn tid formals freturn from_call post_state in
exec_jump retn_site
{ ams with ctrl = { ams . ctrl with stk } ; state = retn_state }
wl
| None ->
if Config . function_summaries then
summarize exit_state | > ( ignore : D . t -> unit ) ;
Work . add ~ retreating : false
{ ams with ctrl = { dst = Terminated tid ; src = block } }
wl )
| >
[ % Trace . retn fun { pf } _ -> pf " " ]
let exec_throw exc ( { ctrl = { ip ; stk }; state } as ams ) wl =
let exec_throw exc ( { ctrl = { ip ; stk ; tid }; state } as ams ) wl =
let func = ( Llair . IP . block ip ) . parent in
let Llair . { name ; formals ; freturn ; fthrow ; locals } = func in
[ % Trace . call fun { pf } -> pf " @ from %a " Llair . Function . pp name ]
;
let unwind formals scope from_call state =
D . retn formals ( Some fthrow ) from_call ( D . post scope from_call state )
D . retn tid formals ( Some fthrow ) from_call
( D . post tid scope from_call state )
in
let pre_state = state in
( match Stack . pop_throw stk ~ unwind pre_state with
| Some ( from_call , retn_site , stk , unwind_state ) ->
let exit_state =
D . exec_move ( IArray . of_ ( fthrow , exc ) ) unwind_state
D . exec_move tid ( IArray . of_ ( fthrow , exc ) ) unwind_state
in
let post_state = D . post locals from_call exit_state in
let retn_state = D . retn formals freturn from_call post_state in
let post_state = D . post tid locals from_call exit_state in
let retn_state = D . retn tid formals freturn from_call post_state in
exec_jump retn_site
{ ams with ctrl = { ams . ctrl with stk } ; state = retn_state }
wl
@ -672,21 +919,39 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
| >
[ % Trace . retn fun { pf } _ -> pf " " ]
let exec_assume cond jump ( { state} as ams ) wl =
match D . exec_assume state cond with
let exec_assume cond jump ( { ctrl= { tid } ; state} as ams ) wl =
match D . exec_assume tid state cond with
| Some state -> exec_jump jump { ams with state } wl
| None ->
[ % Trace . info " infeasible %a@ \n @[%a@] " Llair . Exp . pp cond D . pp state ] ;
wl
let resolve_callee ( pgm : Llair . program ) callee state =
let exec_thread_create reg { Llair . entry ; locals } return
( { ctrl = { tid } ; state ; threads } as ams ) wl =
let child_tid , threads = Threads . create entry threads in
let child =
Llair . Exp . integer ( Llair . Reg . typ reg ) ( Z . of_int child_tid )
in
let state = D . exec_move tid ( IArray . of_ ( reg , child ) ) state in
let state = D . enter_scope child_tid locals state in
exec_jump return { ams with state ; threads } wl
let exec_thread_join thread return ( { ctrl = { tid } ; state ; threads } as ams )
wl =
List . fold ( D . resolve_int tid state thread ) wl ~ f : ( fun join_tid wl ->
match Threads . join join_tid threads with
| Some threads -> exec_jump return { ams with threads } wl
| None -> wl )
let resolve_callee ( pgm : Llair . program ) tid callee state =
let lookup name = Llair . Func . find name pgm . functions in
D . resolve_callee lookup callee state
D . resolve_callee lookup tid callee state
let exec_term pgm ( { ctrl = { ip } ; state } as ams ) wl =
let exec_term pgm ( { ctrl = { ip ; tid }; state } as ams ) wl =
let block = Llair . IP . block ip in
let term = block . term in
[ % Trace . info " @ \n @[%a@]@ \n %a " D . pp state Llair . Term . pp block . term ] ;
[ % Trace . info
" t%i@ \n @[%a@]@ \n %a " tid D . pp state Llair . Term . pp block . term ] ;
Report . step_term block ;
match ( term : Llair . term ) with
| Switch { key ; tbl ; els } ->
@ -706,9 +971,21 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
~ parent : ( Llair . Function . name jump . dst . parent . name )
~ name : jump . dst . lbl ) )
jump ams wl )
| Call call -> exec_call call ams wl
| Call ( { callee ; actuals ; areturn ; return } as call ) -> (
match
( Llair . Function . name callee . name , IArray . to_array actuals , areturn )
with
| " sledge_thread_create " , [| callee |] , Some reg -> (
match resolve_callee pgm tid callee state with
| [] -> exec_skip_func areturn return ams wl
| callees ->
List . fold callees wl ~ f : ( fun callee wl ->
exec_thread_create reg callee return ams wl ) )
| " sledge_thread_join " , [| thread |] , None ->
exec_thread_join thread return ams wl
| _ -> exec_call call ams wl )
| ICall ( { callee ; areturn ; return } as call ) -> (
match resolve_callee pgm callee state with
match resolve_callee pgm tid callee state with
| [] -> exec_skip_func areturn return ams wl
| callees ->
List . fold callees wl ~ f : ( fun callee wl ->
@ -717,15 +994,19 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
| Throw { exc } -> exec_throw exc ams wl
| Unreachable -> wl
let rec exec_ip pgm ( { ctrl = { ip }; state } as ams ) wl =
let rec exec_ip pgm ( { ctrl = { ip ; stk ; tid }; state } as ams ) wl =
match Llair . IP . inst ip with
| Some inst -> (
[ % Trace . info " @\n @[%a@]@ \n %a " D . pp state Llair . Inst . pp inst ] ;
[ % Trace . info " t%i @\n @[%a@]@ \n %a " tid D . pp state Llair . Inst . pp inst ] ;
Report . step_inst ip ;
match D . exec_inst inst state with
match D . exec_inst tid inst state with
| Ok state ->
let ip = Llair . IP . succ ip in
exec_ip pgm { ams with ctrl = { ams . ctrl with ip } ; state } wl
if Llair . IP . is_schedule_point ip then
let src = Llair . IP . block ip in
let edge = { dst = Runnable { ip ; stk ; tid } ; src } in
Work . add ~ retreating : false { ams with ctrl = edge ; state } wl
else exec_ip pgm { ams with ctrl = { ams . ctrl with ip } ; state } wl
| Error alarm ->
Report . alarm alarm ;
wl )
@ -742,8 +1023,8 @@ module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
let actuals = IArray . empty in
let areturn = None in
let state , _ =
D . call ~ summaries ~ globals ~ actuals ~ areturn ~ formals ~ freturn ~ locals
(D . init pgm . globals )
D . call ThreadID . init ~ summaries ~ globals ~ actuals ~ areturn ~ formals
~freturn ~ locals (D . init pgm . globals )
in
Work . init state entry