[pulse] Abstract Location Set

Summary: Instead of variable having the value of a single location on stack, we now allow variables to have multiple locations. Consequently, we also allow a memory location to point to a set of locations in the heap. We enforce a limit on a maximum number of locations in a set (currently 5).

Reviewed By: jvillard

Differential Revision: D13190876

fbshipit-source-id: 5cb5ba9a6
master
Daiva Naudziuniene 6 years ago committed by Facebook Github Bot
parent 62d45f9c01
commit 485b9c7bf5

@ -15,8 +15,6 @@ module Invalidation = PulseInvalidation
module AbstractAddress : sig module AbstractAddress : sig
type t = private int [@@deriving compare] type t = private int [@@deriving compare]
val equal : t -> t -> bool
val mk_fresh : unit -> t val mk_fresh : unit -> t
val pp : F.formatter -> t -> unit val pp : F.formatter -> t -> unit
@ -25,8 +23,6 @@ module AbstractAddress : sig
end = struct end = struct
type t = int [@@deriving compare] type t = int [@@deriving compare]
let equal = [%compare.equal: t]
let next_fresh = ref 1 let next_fresh = ref 1
let mk_fresh () = let mk_fresh () =
@ -39,6 +35,17 @@ end = struct
let init () = next_fresh := 1 let init () = next_fresh := 1
end end
(** Set of abstract addresses in memory. *)
module AbstractAddressSet : sig
include module type of AbstractDomain.FiniteSet (AbstractAddress)
val mk_fresh : unit -> t
end = struct
include AbstractDomain.FiniteSet (AbstractAddress)
let mk_fresh () = singleton (AbstractAddress.mk_fresh ())
end
(* {3 Heap domain } *) (* {3 Heap domain } *)
module Attribute = struct module Attribute = struct
@ -59,7 +66,7 @@ module Attributes = AbstractDomain.FiniteSet (Attribute)
module Memory : sig module Memory : sig
module Edges : module type of PrettyPrintable.MakePPMap (AccessExpression.Access) module Edges : module type of PrettyPrintable.MakePPMap (AccessExpression.Access)
type edges = AbstractAddress.t Edges.t type edges = AbstractAddressSet.t Edges.t
type cell = edges * Attributes.t type cell = edges * Attributes.t
@ -75,13 +82,13 @@ module Memory : sig
val pp : F.formatter -> t -> unit val pp : F.formatter -> t -> unit
val add_edge : AbstractAddress.t -> AccessExpression.Access.t -> AbstractAddress.t -> t -> t val add_edge : AbstractAddress.t -> AccessExpression.Access.t -> AbstractAddressSet.t -> t -> t
val add_edge_and_back_edge : val add_edge_and_back_edge :
AbstractAddress.t -> AccessExpression.Access.t -> AbstractAddress.t -> t -> t AbstractAddress.t -> AccessExpression.Access.t -> AbstractAddressSet.t -> t -> t
val find_edge_opt : val find_edge_opt :
AbstractAddress.t -> AccessExpression.Access.t -> t -> AbstractAddress.t option AbstractAddress.t -> AccessExpression.Access.t -> t -> AbstractAddressSet.t option
val add_attributes : AbstractAddress.t -> Attributes.t -> t -> t val add_attributes : AbstractAddress.t -> Attributes.t -> t -> t
@ -90,13 +97,13 @@ module Memory : sig
val get_invalidation : AbstractAddress.t -> t -> Invalidation.t option val get_invalidation : AbstractAddress.t -> t -> Invalidation.t option
(** None denotes a valid location *) (** None denotes a valid location *)
val std_vector_reserve : AbstractAddress.t -> t -> t val std_vector_reserve : AbstractAddressSet.t -> t -> t
val is_std_vector_reserved : AbstractAddress.t -> t -> bool val is_std_vector_reserved : AbstractAddressSet.t -> t -> bool
end = struct end = struct
module Edges = PrettyPrintable.MakePPMap (AccessExpression.Access) module Edges = PrettyPrintable.MakePPMap (AccessExpression.Access)
type edges = AbstractAddress.t Edges.t type edges = AbstractAddressSet.t Edges.t
type cell = edges * Attributes.t type cell = edges * Attributes.t
@ -105,7 +112,7 @@ end = struct
type t = cell Graph.t type t = cell Graph.t
let pp = let pp =
Graph.pp ~pp_value:(Pp.pair ~fst:(Edges.pp ~pp_value:AbstractAddress.pp) ~snd:Attributes.pp) Graph.pp ~pp_value:(Pp.pair ~fst:(Edges.pp ~pp_value:AbstractAddressSet.pp) ~snd:Attributes.pp)
(* {3 Helper functions to traverse the two maps at once } *) (* {3 Helper functions to traverse the two maps at once } *)
@ -123,15 +130,19 @@ end = struct
(** [Dereference] edges induce a [TakeAddress] back edge and vice-versa, because (** [Dereference] edges induce a [TakeAddress] back edge and vice-versa, because
[*(&x) = &( *x ) = x]. *) [*(&x) = &( *x ) = x]. *)
let add_edge_and_back_edge addr_src (access : AccessExpression.Access.t) addr_end memory = let add_edge_and_back_edge addr_src (access : AccessExpression.Access.t) addrs_end memory =
let memory = add_edge addr_src access addr_end memory in let memory = add_edge addr_src access addrs_end memory in
match access with match access with
| ArrayAccess _ | FieldAccess _ -> | ArrayAccess _ | FieldAccess _ ->
memory memory
| TakeAddress -> | TakeAddress ->
add_edge addr_end Dereference addr_src memory AbstractAddressSet.fold
(fun addr_end -> add_edge addr_end Dereference (AbstractAddressSet.singleton addr_src))
addrs_end memory
| Dereference -> | Dereference ->
add_edge addr_end TakeAddress addr_src memory AbstractAddressSet.fold
(fun addr_end -> add_edge addr_end TakeAddress (AbstractAddressSet.singleton addr_src))
addrs_end memory
let find_edge_opt addr access memory = let find_edge_opt addr access memory =
@ -174,12 +185,19 @@ end = struct
|> Option.bind ~f:(function Attribute.Invalid invalidation -> Some invalidation | _ -> None) |> Option.bind ~f:(function Attribute.Invalid invalidation -> Some invalidation | _ -> None)
let std_vector_reserve address memory = add_attribute address Attribute.StdVectorReserve memory let std_vector_reserve addresses memory =
AbstractAddressSet.fold
(fun address -> add_attribute address Attribute.StdVectorReserve)
addresses memory
let is_std_vector_reserved address memory =
Graph.find_opt address memory |> Option.map ~f:snd let is_std_vector_reserved addresses memory =
|> Option.value_map ~default:false ~f:(fun attributes -> AbstractAddressSet.exists
Attributes.mem Attribute.StdVectorReserve attributes ) (fun address ->
Graph.find_opt address memory |> Option.map ~f:snd
|> Option.value_map ~default:false ~f:(fun attributes ->
Attributes.mem Attribute.StdVectorReserve attributes ) )
addresses
(* {3 Monomorphic {!PPMap} interface as needed } *) (* {3 Monomorphic {!PPMap} interface as needed } *)
@ -199,20 +217,7 @@ end
own. It so happens that the join on abstract states uses the join of stacks provided by this own. It so happens that the join on abstract states uses the join of stacks provided by this
functor followed by normalization wrt the unification found between abstract locations so it's functor followed by normalization wrt the unification found between abstract locations so it's
convenient to define stacks as elements of this domain. *) convenient to define stacks as elements of this domain. *)
module Stack = module Stack = AbstractDomain.Map (Var) (AbstractAddressSet)
AbstractDomain.Map
(Var)
(struct
type t = AbstractAddress.t
let ( <= ) ~lhs ~rhs = AbstractAddress.equal lhs rhs
let join l1 l2 = min l1 l2
let widen ~prev ~next ~num_iters:_ = join prev next
let pp = AbstractAddress.pp
end)
(** the domain *) (** the domain *)
type astate = {heap: Memory.t; stack: Stack.t} type astate = {heap: Memory.t; stack: Stack.t}
@ -237,10 +242,11 @@ module Domain : AbstractDomain.S with type t = astate = struct
(Option.map ~f:fst cell, Option.value_map ~default:Attributes.empty ~f:snd cell) (Option.map ~f:fst cell, Option.value_map ~default:Attributes.empty ~f:snd cell)
in in
Memory.Edges.for_all Memory.Edges.for_all
(fun access_lhs addr_dst -> (fun access_lhs lhs_addr_dst ->
Option.bind edges_rhs_opt ~f:(fun edges_rhs -> Option.bind edges_rhs_opt ~f:(fun edges_rhs ->
Memory.Edges.find_opt access_lhs edges_rhs ) Memory.Edges.find_opt access_lhs edges_rhs )
|> Option.map ~f:(AbstractAddress.equal addr_dst) |> Option.map ~f:(fun rhs_addr_dst ->
AbstractAddressSet.( <= ) ~lhs:lhs_addr_dst ~rhs:rhs_addr_dst )
|> Option.value ~default:false ) |> Option.value ~default:false )
edges_lhs edges_lhs
&& Attributes.( <= ) ~lhs:attrs_lhs ~rhs:attrs_rhs ) && Attributes.( <= ) ~lhs:attrs_lhs ~rhs:attrs_rhs )
@ -269,29 +275,43 @@ module Domain : AbstractDomain.S with type t = astate = struct
(** just to get the correct type coercion *) (** just to get the correct type coercion *)
let to_canonical_address subst addr = (AddressUF.find subst addr :> AbstractAddress.t) let to_canonical_address subst addr = (AddressUF.find subst addr :> AbstractAddress.t)
let to_canonical_address_set subst addrs =
AbstractAddressSet.map (to_canonical_address subst) addrs
type nonrec t = {subst: AddressUF.t; astate: t} type nonrec t = {subst: AddressUF.t; astate: t}
let max_size_of_abstract_address_set = 5
(** adds [(src_addr, access, dst_addr)] to [union_heap] and record potential new equality that (** adds [(src_addr, access, dst_addr)] to [union_heap] and record potential new equality that
results from it in [subst] *) results from it in [subst] *)
let union_one_edge subst src_addr access dst_addr union_heap = let union_one_edge subst src_addr access dst_addr union_heap =
let src_addr = to_canonical_address subst src_addr in let src_addr = to_canonical_address subst src_addr in
let dst_addr = to_canonical_address subst dst_addr in let dst_addr = to_canonical_address_set subst dst_addr in
match match
(Memory.find_edge_opt src_addr access union_heap, (access : AccessExpression.Access.t)) (Memory.find_edge_opt src_addr access union_heap, (access : AccessExpression.Access.t))
with with
| Some dst_addr', _ when AbstractAddress.equal dst_addr dst_addr' -> | Some dst_addr', _ when phys_equal dst_addr dst_addr' ->
(* same edge *) (* same edge *)
(union_heap, `No_new_equality) (union_heap, `No_new_equality)
| _, ArrayAccess _ -> | _, ArrayAccess _ ->
(* do not trust array accesses for now, replace the destination of the edge by a fresh location *) (* do not trust array accesses for now, replace the destination of the edge by a fresh location *)
( Memory.add_edge src_addr access (AbstractAddress.mk_fresh ()) union_heap ( Memory.add_edge src_addr access (AbstractAddressSet.mk_fresh ()) union_heap
, `No_new_equality ) , `No_new_equality )
| None, _ -> | None, _ ->
(Memory.add_edge src_addr access dst_addr union_heap, `No_new_equality) (Memory.add_edge src_addr access dst_addr union_heap, `No_new_equality)
| Some dst_addr', _ -> | Some dst_addr', _ ->
(* new equality [dst_addr = dst_addr'] found *) let addr_join = AbstractAddressSet.join dst_addr dst_addr' in
ignore (AddressUF.union subst dst_addr dst_addr') ; if AbstractAddressSet.cardinal addr_join > max_size_of_abstract_address_set then (
(union_heap, `New_equality) let min_addr = AbstractAddressSet.min_elt addr_join in
AbstractAddressSet.iter
(fun addr -> ignore (AddressUF.union subst min_addr addr))
addr_join ;
( Memory.add_edge src_addr access
(AbstractAddressSet.singleton (to_canonical_address subst min_addr))
union_heap
, `New_equality ) )
else (Memory.add_edge src_addr access addr_join union_heap, `No_new_equality)
module Addresses = Caml.Set.Make (AbstractAddress) module Addresses = Caml.Set.Make (AbstractAddress)
@ -303,7 +323,7 @@ module Domain : AbstractDomain.S with type t = astate = struct
let visit_edge access addr_dst (visited, union_heap) = let visit_edge access addr_dst (visited, union_heap) =
union_one_edge subst addr access addr_dst union_heap union_one_edge subst addr access addr_dst union_heap
|> fst |> fst
|> visit_address subst visited heap addr_dst |> visit_address_set subst visited heap addr_dst
in in
Memory.find_opt addr heap Memory.find_opt addr heap
|> Option.fold ~init:(visited, union_heap) ~f:(fun (visited, union_heap) (edges, attrs) -> |> Option.fold ~init:(visited, union_heap) ~f:(fun (visited, union_heap) (edges, attrs) ->
@ -311,12 +331,19 @@ module Domain : AbstractDomain.S with type t = astate = struct
Memory.Edges.fold visit_edge edges (visited, union_heap) ) Memory.Edges.fold visit_edge edges (visited, union_heap) )
and visit_address_set subst visited heap addrs union_heap =
AbstractAddressSet.fold
(fun addr (visited, union_heap) -> visit_address subst visited heap addr union_heap)
addrs (visited, union_heap)
let visit_stack subst heap stack union_heap = let visit_stack subst heap stack union_heap =
(* start graph exploration *) (* start graph exploration *)
let visited = Addresses.empty in let visited = Addresses.empty in
let _, union_heap = let _, union_heap =
Stack.fold Stack.fold
(fun _var addr (visited, union_heap) -> visit_address subst visited heap addr union_heap) (fun _var addr (visited, union_heap) ->
visit_address_set subst visited heap addr union_heap )
stack (visited, union_heap) stack (visited, union_heap)
in in
union_heap union_heap
@ -330,9 +357,14 @@ module Domain : AbstractDomain.S with type t = astate = struct
(fun _var addr1_opt addr2_opt -> (fun _var addr1_opt addr2_opt ->
Option.both addr1_opt addr2_opt Option.both addr1_opt addr2_opt
|> Option.iter ~f:(fun (addr1, addr2) -> |> Option.iter ~f:(fun (addr1, addr2) ->
(* stack1 says [_var = addr1] and stack2 says [_var = addr2]: unify the let addr_join = AbstractAddressSet.join addr1 addr2 in
addresses since they are equal to the same variable *) if AbstractAddressSet.cardinal addr_join > max_size_of_abstract_address_set
ignore (AddressUF.union subst addr1 addr2) ) ; then
let min_addr = AbstractAddressSet.min_elt addr_join in
AbstractAddressSet.iter
(fun addr -> ignore (AddressUF.union subst min_addr addr))
addr_join
else () ) ;
(* empty result map *) (* empty result map *)
None ) None )
stack1 stack2) stack1 stack2)
@ -375,7 +407,7 @@ module Domain : AbstractDomain.S with type t = astate = struct
AddressUnionSet.pp set ) AddressUnionSet.pp set )
in in
L.d_printfln "Join unified addresses:@\n@[<v2> %a@]" pp_union_find_classes state.subst ; L.d_printfln "Join unified addresses:@\n@[<v2> %a@]" pp_union_find_classes state.subst ;
let stack = Stack.map (to_canonical_address state.subst) state.astate.stack in let stack = Stack.map (to_canonical_address_set state.subst) state.astate.stack in
{heap; stack} ) {heap; stack} )
else normalize {state with astate= {state.astate with heap}} else normalize {state with astate= {state.astate with heap}}
end end
@ -493,6 +525,12 @@ module Operations = struct
Ok astate Ok astate
let check_addr_access_set actor addresses astate =
AbstractAddressSet.fold
(fun addr result -> result >>= check_addr_access actor addr)
addresses (Ok astate)
(** Walk the heap starting from [addr] and following [path]. Stop either at the element before last (** Walk the heap starting from [addr] and following [path]. Stop either at the element before last
and return [new_addr] if [overwrite_last] is [Some new_addr], or go until the end of the path if it and return [new_addr] if [overwrite_last] is [Some new_addr], or go until the end of the path if it
is [None]. Create more addresses into the heap as needed to follow the [path]. Check that each is [None]. Create more addresses into the heap as needed to follow the [path]. Check that each
@ -500,7 +538,7 @@ module Operations = struct
let rec walk actor ~on_last addr path astate = let rec walk actor ~on_last addr path astate =
match (path, on_last) with match (path, on_last) with
| [], `Access -> | [], `Access ->
Ok (astate, addr) Ok (astate, AbstractAddressSet.singleton addr)
| [], `Overwrite _ -> | [], `Overwrite _ ->
L.die InternalError "Cannot overwrite last address in empty path" L.die InternalError "Cannot overwrite last address in empty path"
| [a], `Overwrite new_addr -> | [a], `Overwrite new_addr ->
@ -513,12 +551,23 @@ module Operations = struct
>>= fun astate -> >>= fun astate ->
match Memory.find_edge_opt addr a astate.heap with match Memory.find_edge_opt addr a astate.heap with
| None -> | None ->
let addr' = AbstractAddress.mk_fresh () in let addr' = AbstractAddressSet.mk_fresh () in
let heap = Memory.add_edge_and_back_edge addr a addr' astate.heap in let heap = Memory.add_edge_and_back_edge addr a addr' astate.heap in
let astate = {astate with heap} in let astate = {astate with heap} in
walk actor ~on_last addr' path astate walk_set actor ~on_last addr' path astate
| Some addr' -> | Some addr' ->
walk actor ~on_last addr' path astate ) walk_set actor ~on_last addr' path astate )
and walk_set actor ~on_last addrs path astate =
AbstractAddressSet.fold
(fun addr result ->
result
>>= fun (astate, addr1) ->
walk actor ~on_last addr path astate
>>= fun (astate, addr2) -> Ok (astate, AbstractAddressSet.join addr1 addr2) )
addrs
(Ok (astate, AbstractAddressSet.empty))
let write_var var addr astate = let write_var var addr astate =
@ -542,12 +591,12 @@ module Operations = struct
| Some addr -> | Some addr ->
(astate, addr) (astate, addr)
| None -> | None ->
let addr = AbstractAddress.mk_fresh () in let addr = AbstractAddressSet.mk_fresh () in
let stack = Stack.add access_var addr astate.stack in let stack = Stack.add access_var addr astate.stack in
({astate with stack}, addr) ({astate with stack}, addr)
in in
let actor = {access_expr; location} in let actor = {access_expr; location} in
walk actor ~on_last base_addr access_list astate walk_set actor ~on_last base_addr access_list astate
(** Use the stack and heap to walk the access path represented by the given expression down to an (** Use the stack and heap to walk the access path represented by the given expression down to an
@ -571,8 +620,10 @@ module Operations = struct
{astate with heap= Memory.invalidate address actor astate.heap} {astate with heap= Memory.invalidate address actor astate.heap}
let mark_invalid_set actor = AbstractAddressSet.fold (mark_invalid actor)
let havoc_var var astate = let havoc_var var astate =
{astate with stack= Stack.add var (AbstractAddress.mk_fresh ()) astate.stack} {astate with stack= Stack.add var (AbstractAddressSet.mk_fresh ()) astate.stack}
let havoc location (access_expr : AccessExpression.t) astate = let havoc location (access_expr : AccessExpression.t) astate =
@ -581,7 +632,7 @@ module Operations = struct
havoc_var access_var astate |> Result.return havoc_var access_var astate |> Result.return
| _ -> | _ ->
walk_access_expr walk_access_expr
~on_last:(`Overwrite (AbstractAddress.mk_fresh ())) ~on_last:(`Overwrite (AbstractAddressSet.mk_fresh ()))
astate access_expr location astate access_expr location
>>| fst >>| fst
@ -590,7 +641,7 @@ module Operations = struct
materialize_address astate access_expr location materialize_address astate access_expr location
>>= fun (astate, addr) -> >>= fun (astate, addr) ->
let actor = {access_expr; location} in let actor = {access_expr; location} in
check_addr_access actor addr astate >>| fun astate -> (astate, addr) check_addr_access_set actor addr astate >>| fun astate -> (astate, addr)
let read_all location access_exprs astate = let read_all location access_exprs astate =
@ -605,7 +656,7 @@ module Operations = struct
let invalidate cause location access_expr astate = let invalidate cause location access_expr astate =
materialize_address astate access_expr location materialize_address astate access_expr location
>>= fun (astate, addr) -> >>= fun (astate, addr) ->
check_addr_access {access_expr; location} addr astate >>| mark_invalid cause addr check_addr_access_set {access_expr; location} addr astate >>| mark_invalid_set cause addr
let remove_vars vars astate = let remove_vars vars astate =

@ -15,6 +15,10 @@ end
include AbstractDomain.S include AbstractDomain.S
module AbstractAddressSet : sig
type t
end
val initial : t val initial : t
module Diagnostic : sig module Diagnostic : sig
@ -37,7 +41,7 @@ module StdVector : sig
val mark_reserved : Location.t -> AccessExpression.t -> t -> t access_result val mark_reserved : Location.t -> AccessExpression.t -> t -> t access_result
end end
val read : Location.t -> AccessExpression.t -> t -> (t * AbstractAddress.t) access_result val read : Location.t -> AccessExpression.t -> t -> (t * AbstractAddressSet.t) access_result
val read_all : Location.t -> AccessExpression.t list -> t -> t access_result val read_all : Location.t -> AccessExpression.t list -> t -> t access_result
@ -45,9 +49,9 @@ val havoc_var : Var.t -> t -> t
val havoc : Location.t -> AccessExpression.t -> t -> t access_result val havoc : Location.t -> AccessExpression.t -> t -> t access_result
val write_var : Var.t -> AbstractAddress.t -> t -> t val write_var : Var.t -> AbstractAddressSet.t -> t -> t
val write : Location.t -> AccessExpression.t -> AbstractAddress.t -> t -> t access_result val write : Location.t -> AccessExpression.t -> AbstractAddressSet.t -> t -> t access_result
val invalidate : PulseInvalidation.t -> Location.t -> AccessExpression.t -> t -> t access_result val invalidate : PulseInvalidation.t -> Location.t -> AccessExpression.t -> t -> t access_result

@ -10,7 +10,6 @@ codetoanalyze/cpp/pulse/use_after_delete.cpp, reassign_field_of_deleted_bad, 3,
codetoanalyze/cpp/pulse/use_after_delete.cpp, return_deleted_bad, 3, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 24, column 3 here,accessed `s` here] codetoanalyze/cpp/pulse/use_after_delete.cpp, return_deleted_bad, 3, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 24, column 3 here,accessed `s` here]
codetoanalyze/cpp/pulse/use_after_delete.cpp, use_in_branch_bad, 4, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 73, column 3 here,accessed `s` here] codetoanalyze/cpp/pulse/use_after_delete.cpp, use_in_branch_bad, 4, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 73, column 3 here,accessed `s` here]
codetoanalyze/cpp/pulse/use_after_delete.cpp, use_in_loop_bad, 4, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 102, column 3 here,accessed `s->f` here] codetoanalyze/cpp/pulse/use_after_delete.cpp, use_in_loop_bad, 4, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 102, column 3 here,accessed `s->f` here]
codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::FP_allocate_in_branch_ok, 10, USE_AFTER_DESTRUCTOR, no_bucket, ERROR, [invalidated by destructor call `std::unique_ptr<use_after_destructor::A,std::default_delete<use_after_destructor::A>>_~unique_ptr(a2)` at line 245, column 10 here,accessed `a1` here]
codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::double_destructor_bad, 5, USE_AFTER_DESTRUCTOR, no_bucket, ERROR, [invalidated by destructor call `use_after_destructor::S_~S(s)` at line 64, column 3 here,accessed `s` here] codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::double_destructor_bad, 5, USE_AFTER_DESTRUCTOR, no_bucket, ERROR, [invalidated by destructor call `use_after_destructor::S_~S(s)` at line 64, column 3 here,accessed `s` here]
codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::placement_new_aliasing1_bad, 5, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete alias` at line 142, column 3 here,accessed `s` here] codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::placement_new_aliasing1_bad, 5, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete alias` at line 142, column 3 here,accessed `s` here]
codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::placement_new_aliasing2_bad, 5, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 150, column 3 here,accessed `alias` here] codetoanalyze/cpp/pulse/use_after_destructor.cpp, use_after_destructor::placement_new_aliasing2_bad, 5, USE_AFTER_DELETE, no_bucket, ERROR, [invalidated by call to `delete s` at line 150, column 3 here,accessed `alias` here]

@ -232,7 +232,7 @@ void FP_destructor_order_empty_destructor_ok() {
a.f = &b; a.f = &b;
} }
std::unique_ptr<A>* FP_allocate_in_branch_ok(bool b) { std::unique_ptr<A>* allocate_in_branch_ok(bool b) {
std::unique_ptr<A> a1; std::unique_ptr<A> a1;
std::unique_ptr<A> a2; std::unique_ptr<A> a2;
std::unique_ptr<A>* a3 = &a1; std::unique_ptr<A>* a3 = &a1;
@ -240,9 +240,9 @@ std::unique_ptr<A>* FP_allocate_in_branch_ok(bool b) {
if (b) { if (b) {
a2 = std::make_unique<A>(*a1); a2 = std::make_unique<A>(*a1);
a3 = &a2; a3 = &a2;
} // current join makes a1 and a2 equal }
return a3; return a3;
} // we get `use after destructor` for a1, after destructor call for a2 }
} // namespace use_after_destructor } // namespace use_after_destructor

Loading…
Cancel
Save