[sledge] Remove disequality formula

Summary: It is redundant with `Not Eq`

Reviewed By: jvillard

Differential Revision: D24306046

fbshipit-source-id: fbfba5c59
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 157e990d36
commit 5acd64c22e

@ -259,7 +259,6 @@ module Fml : sig
| Tt | Tt
(* equality *) (* equality *)
| Eq of trm * trm | Eq of trm * trm
| Dq of trm * trm
(* arithmetic *) (* arithmetic *)
| Eq0 of trm (** [Eq0(x)] iff x = 0 *) | Eq0 of trm (** [Eq0(x)] iff x = 0 *)
| Dq0 of trm (** [Dq0(x)] iff x ≠ 0 *) | Dq0 of trm (** [Dq0(x)] iff x ≠ 0 *)
@ -279,7 +278,6 @@ module Fml : sig
val _Tt : fml val _Tt : fml
val _Eq : trm -> trm -> fml val _Eq : trm -> trm -> fml
val _Dq : trm -> trm -> fml
val _Eq0 : trm -> fml val _Eq0 : trm -> fml
val _Dq0 : trm -> fml val _Dq0 : trm -> fml
val _Gt0 : trm -> fml val _Gt0 : trm -> fml
@ -296,7 +294,6 @@ end = struct
type fml = type fml =
| Tt | Tt
| Eq of trm * trm | Eq of trm * trm
| Dq of trm * trm
| Eq0 of trm | Eq0 of trm
| Dq0 of trm | Dq0 of trm
| Gt0 of trm | Gt0 of trm
@ -361,16 +358,6 @@ end = struct
| SynLt -> Eq (x, y) | SynLt -> Eq (x, y)
| SynGt -> Eq (y, x) | SynGt -> Eq (y, x)
let _Dq x y =
if x == zero then _Dq0 y
else if y == zero then _Dq0 x
else
match compare_semantic_syntactic x y with
| SemEq -> _Ff
| SemDq -> Tt
| SynLt -> Dq (x, y)
| SynGt -> Dq (y, x)
let _Gt0 = function let _Gt0 = function
| Z z -> if Z.gt z Z.zero then Tt else _Ff | Z z -> if Z.gt z Z.zero then Tt else _Ff
| Q q -> if Q.gt q Q.zero then Tt else _Ff | Q q -> if Q.gt q Q.zero then Tt else _Ff
@ -385,7 +372,7 @@ end = struct
let _UNegLit p xs = UNegLit (p, xs) let _UNegLit p xs = UNegLit (p, xs)
let rec is_negative = function let rec is_negative = function
| Not Tt | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true | Not (Tt | Eq _) | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ -> | Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
false false
| Not p -> not (is_negative p) | Not p -> not (is_negative p)
@ -395,8 +382,6 @@ end = struct
let rec equal_or_opposite p q = let rec equal_or_opposite p q =
match (p, q) with match (p, q) with
| p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown | p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown
| Eq (a, b), Dq (a', b') | Dq (a, b), Eq (a', b') ->
if equal_trm a a' && equal_trm b b' then Opposite else Unknown
| Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' -> | Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' ->
if equal_trm a a' then Opposite else Unknown if equal_trm a a' then Opposite else Unknown
| And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> ( | And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> (
@ -473,8 +458,6 @@ end = struct
Xor (p, q) ) Xor (p, q) )
and _Not = function and _Not = function
| Eq (x, y) -> _Dq x y
| Dq (x, y) -> _Eq x y
| Eq0 x -> _Dq0 x | Eq0 x -> _Dq0 x
| Dq0 x -> _Eq0 x | Dq0 x -> _Eq0 x
| Gt0 x -> _Le0 x | Gt0 x -> _Le0 x
@ -487,7 +470,7 @@ end = struct
| Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg) | Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg)
| UPosLit (p, xs) -> _UNegLit p xs | UPosLit (p, xs) -> _UNegLit p xs
| UNegLit (p, xs) -> _UPosLit p xs | UNegLit (p, xs) -> _UPosLit p xs
| Tt as x -> Not x | (Tt | Eq _) as x -> Not x
and _Cond cnd pos neg = and _Cond cnd pos neg =
match (cnd, pos, neg) with match (cnd, pos, neg) with
@ -554,7 +537,7 @@ let ppx_f strength fs fml =
| Tt -> pf "tt" | Tt -> pf "tt"
| Not Tt -> pf "ff" | Not Tt -> pf "ff"
| Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y | Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y
| Dq (x, y) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y | Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
| Eq0 x -> pf "(0 = %a)" pp_t x | Eq0 x -> pf "(0 = %a)" pp_t x
| Dq0 x -> pf "(0 @<2>≠ %a)" pp_t x | Dq0 x -> pf "(0 @<2>≠ %a)" pp_t x
| Gt0 x -> pf "(0 < %a)" pp_t x | Gt0 x -> pf "(0 < %a)" pp_t x
@ -613,7 +596,7 @@ let rec fold_vars_t e ~init ~f =
let rec fold_vars_f ~init p ~f = let rec fold_vars_f ~init p ~f =
match (p : fml) with match (p : fml) with
| Tt -> init | Tt -> init
| Eq (x, y) | Dq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init) | Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init | Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init
| Not x -> fold_vars_f ~f x ~init | Not x -> fold_vars_f ~f x ~init
| And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) -> | And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) ->
@ -662,7 +645,6 @@ let rec map_trms_f ~f b =
match b with match b with
| Tt -> b | Tt -> b
| Eq (x, y) -> map2 f b _Eq x y | Eq (x, y) -> map2 f b _Eq x y
| Dq (x, y) -> map2 f b _Dq x y
| Eq0 x -> map1 f b _Eq0 x | Eq0 x -> map1 f b _Eq0 x
| Dq0 x -> map1 f b _Dq0 x | Dq0 x -> map1 f b _Dq0 x
| Gt0 x -> map1 f b _Gt0 x | Gt0 x -> map1 f b _Gt0 x
@ -972,7 +954,7 @@ module Formula = struct
(* comparisons *) (* comparisons *)
let eq = ap2f _Eq let eq = ap2f _Eq
let dq = ap2f _Dq let dq a b = _Not (eq a b)
let eq0 = ap1f _Eq0 let eq0 = ap1f _Eq0
let dq0 = ap1f _Dq0 let dq0 = ap1f _Dq0
let gt0 = ap1f _Gt0 let gt0 = ap1f _Gt0
@ -1037,7 +1019,6 @@ module Formula = struct
match b with match b with
| Tt -> b | Tt -> b
| Eq (x, y) -> lift_map2 f b _Eq x y | Eq (x, y) -> lift_map2 f b _Eq x y
| Dq (x, y) -> lift_map2 f b _Dq x y
| Eq0 x -> lift_map1 f b _Eq0 x | Eq0 x -> lift_map1 f b _Eq0 x
| Dq0 x -> lift_map1 f b _Dq0 x | Dq0 x -> lift_map1 f b _Dq0 x
| Gt0 x -> lift_map1 f b _Gt0 x | Gt0 x -> lift_map1 f b _Gt0 x
@ -1073,7 +1054,7 @@ module Formula = struct
fun ~meet1 ~join1 ~top ~bot fml -> fun ~meet1 ~join1 ~top ~bot fml ->
let rec add_conjunct (cjn, splits) fml = let rec add_conjunct (cjn, splits) fml =
match fml with match fml with
| Tt | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _ | Tt | Eq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _
|UPosLit _ | UNegLit _ | Not _ -> |UPosLit _ | UNegLit _ | Not _ ->
(meet1 fml cjn, splits) (meet1 fml cjn, splits)
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q | And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
@ -1148,7 +1129,6 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Tt -> Ses.Term.true_ | Tt -> Ses.Term.true_
| Not Tt -> Ses.Term.false_ | Not Tt -> Ses.Term.false_
| Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y) | Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y)
| Dq (x, y) -> Ses.Term.dq (t_to_ses x) (t_to_ses y)
| Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x) | Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x)
| Dq0 x -> Ses.Term.dq Ses.Term.zero (t_to_ses x) | Dq0 x -> Ses.Term.dq Ses.Term.zero (t_to_ses x)
| Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x) | Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x)

Loading…
Cancel
Save