Summary:
Now that the shape of the record type of AbductiveDomain.t is known, we
don't need this getter anymore. Keep `get_pre` and `get_post` as they
perform useful casting to `BaseDomain.t`.
Reviewed By: ezgicicek
Differential Revision: D21022924
fbshipit-source-id: 340f4edf8
Summary:
The "interface" modules define short forms for the internals of pulse
and also serve as a guide of which modules you are supposed to use at
which "level" in the pulse domains (base domain vs abductive domain vs
higher-level PulseOperations.ml). Make sure they are used.
Reviewed By: skcho
Differential Revision: D21022927
fbshipit-source-id: f890df245
Summary:
PulseAbductiveDomain.ml can be split into two distinct parts:
1. The definition of the "abductive domain" itself. This remains in that
file.
2. How to apply a given pre/post pair to the current state (during a
function call). This is about the same size as 1. in terms of lines
of code(!) and is now in PulseInterproc.ml.
Reviewed By: ezgicicek
Differential Revision: D21022921
fbshipit-source-id: 431fe061e
Summary:
As soon as pulse detects an error, it completely stops the analysis and loses the state where the error occurred. This makes it difficult to debug and understand the state the program failed. Moreover, other analyses that might build on pulse (e.g. impurity), cannot access the error state.
This diff aims to restore and display the state at the time of the error in `PulseExecutionState` along with the diagnostic by extending it as follows:
```
type exec_state =
| represents the state at the program point that caused an error *)
```
As a result, since we don't immediately stop the analysis as soon as we find an error, we detect both errors in conditional branches simultaneously (see test result changes for examples).
NOTE: We need to extend `PulseOperations.access_result` to keep track of the failed state as follows:
```
type 'a access_result = ('a, Diagnostic.t * t [denoting the exit state] ) result
```
Reviewed By: jvillard
Differential Revision: D20918920
fbshipit-source-id: 432ac68d6
Summary:
This diff lifts the `PulseAbductiveDomain.t` in `PulseExecutionState` by tracking whether the program continues the analysis normally or exits unusually (e.g. by calling `exit` or `throw`):
```
type exec_state =
| ContinueProgram of PulseAbductiveDomain.t (** represents the state at the program point *)
| ExitProgram of PulseAbductiveDomain.t
(** represents the state originating at exit/divergence. *)
```
Now, Pulse's actual domain is tracked by `PulseExecutionState` and as soon as we try to analyze an instruction at `ExitProgram`, we simply return its state.
The aim is to recover the state at the time of the exit, rather than simply ignoring them (i.e. returning empty disjuncts). This allows us to get rid of some FNs that we were not able to detect before. Moreover, it also allows the impurity analysis to be more precise since we will know how the state changed up to exit.
TODO:
- Impurity analysis needs to be improved to consider functions that simply exit as impure.
- The next goal is to handle error state similarly so that when pulse finds an error, we recover the state at the error location (and potentially continue to analyze?).
Disclaimer: currently, we handle throw statements like exit (as was the case before). However, this is not correct. Ideally, control flow from throw nodes follows catch nodes rather than exiting the program entirely.
Reviewed By: jvillard
Differential Revision: D20791747
fbshipit-source-id: df9e5445a
Summary:
This models all the Create and Copy functions from CoreGraphics, examples in the tests.
These functions all allocate memory that needs to be manually released.
The modelling of the release functions will happen in a following diff. Until then, we have some false positives in the tests.
This check is currently in biabduction, and we aim to move it to Pulse.
Reviewed By: jvillard
Differential Revision: D20626395
fbshipit-source-id: b39eae2d9
Summary:
First version of a new memory leak check based on Pulse. The idea is to examine unreachable cells in the heap and check that the "Allocated" attribute is available but the "Invalid CFree" isn't. This is done when we remove variables from the state.
Currently it only works for malloc, we can extend it to other allocation functions later.
Reviewed By: jvillard
Differential Revision: D20444097
fbshipit-source-id: 33b6b25a2
Summary:
`make deadcode` is failing on master but our CI jobs didn't catch it :(
Let's fix existing deadcode for now.
Reviewed By: martintrojer
Differential Revision: D20510062
fbshipit-source-id: 4a5e5f849
Summary:
Be a bit more careful about the difference between PrePost.t and
AbductiveDomain.t. It's needed in another diff where the types will be
different.
Reviewed By: ezgicicek
Differential Revision: D20393927
fbshipit-source-id: beaf80c90
Summary: In preparation for PulseArithmetic to be something else.
Reviewed By: ezgicicek
Differential Revision: D20393928
fbshipit-source-id: d93131e12
Summary:
Adding a model for malloc: we add an attribute "Allocated". This can be used for implementing memory leaks: whenever the variables get out of scope, we can check that if the variable has an attribute Allocated, it also has an attribute Invalid CFree.
Possibly we will need more details in the Allocated attribute, to know if it's malloc, or other allocation function, but we can add that later when we know how it should look like.
Reviewed By: jvillard
Differential Revision: D20364541
fbshipit-source-id: 5e667a8c3
Summary: We don't need skipped calls for pre and post. Let's pull them out to `PulseAbductiveDomain`, next to pre and post.
Reviewed By: jvillard
Differential Revision: D20283589
fbshipit-source-id: 5cf970292
Summary:
Let's collect the list of all skipped functions with a `proc_name` but no summary in Pulse's memory. This will be useful for the impurity analysis later (next diff).
Concretely, we extend Pulse's domain with a map from skipped calls to their respective traces. For efficiency, we only keep a single trace per skipped call.
For impurity analysis, tracking skipped calls in Pulse allows us to rely on Pulse's strong memory model to get rid of infeasible paths as opposed to creating an independent checker which wouldn't be able to do that.
Reviewed By: jvillard
Differential Revision: D19428426
fbshipit-source-id: 3c5e482c5
Summary:
Refine the type of inferbo intervals attributes to "pure" (non-bottom)
ones. This is because were we to get a Bottom value from inferbo we
should stop the abstract execution instead of recording it in the state.
Reviewed By: ezgicicek
Differential Revision: D18811165
fbshipit-source-id: fff8664b7
Summary:
This diff enables parsing and auto-formatting documentation
comments (aka docstrings).
I have looked at this entire diff and manually made some changes to
improve the formatting. In some cases it looked like it would take too
much time, or benefit from someone more familiar with the code doing
it, and I instead disabled auto-formatting docstrings in those files.
Also, there are some source files where the docstrings are invalid,
and some where the structure detected by the parser appears not to
match what was intended. Auto-formatting has been disabled for these
files.
Reviewed By: ezgicicek
Differential Revision: D18755888
fbshipit-source-id: 68d72465d
Summary: This extends semantics of binary operator for BoItv. If there is no known interval value for a pulse value, it returns a symbolic value of the pulse value.
Reviewed By: jvillard
Differential Revision: D18726768
fbshipit-source-id: ed8ecf78b
Summary:
When reporting null dereference it is useful to know where the null came
from.
Reviewed By: skcho
Differential Revision: D18206459
fbshipit-source-id: 0c8e6781b
Summary:
This simplifies the code overall. It also makes accessing the action of
a "trace" (which is now stored alongside it instead of deep inside it)
constant time instead of linear in the number of nested calls.
Reviewed By: skcho
Differential Revision: D18206460
fbshipit-source-id: 9546ff36f
Summary:
This does several things because it was hard to split it more:
1. Split most of the arithmetic reasoning to PulseArithmetic.ml. This
doesn't need to be reviewed thoroughly because an upcoming diff
changes the domain from just `EqualTo of Const.t` to an interval domain!
2. When going through a prune node intra-procedurally, abduce arithmetic
facts to the pre (instead of just propagating them). This is the "assume
as assert" trick used by biabduction 1.0 too and allows to propagate
arithmetic constraints to callers.
3. Use 2 when applying summaries by pruning specs whose preconditions
have un-satisfiable arithmetic constraints.
This changes one of the tests! Pulse now does a bit more work to find
the false positive, as can be seen in the longer trace.
Reviewed By: skcho
Differential Revision: D18117160
fbshipit-source-id: af3b2c8c0
Summary:
If a precondition cannot be applied, it means that this program path
somehow doesn't make sense for the caller and so should be pruned. Right
now we just treat this as skipping over the call instead.
This will become more important when specs start mentioning arithmetic
facts that must be satisfied at the call site. As it is we will only
stop if we discover aliasing in the pre not present at the call site or
vice versa.
Reviewed By: dulmarod
Differential Revision: D18115230
fbshipit-source-id: 4f1c7a583
Summary:
That module's interface was repeated twice to avoid exposing its
internals to PulseDomain itself. It's also quite long so it makes sense
to move it to its own file.
Reviewed By: ezgicicek
Differential Revision: D17977209
fbshipit-source-id: 56a2dac24
Summary:
Another poorman's library, this time about Pulse Domains. Also renames
`PulseDomain` to `PulseBaseDomain`.
Reviewed By: ezgicicek
Differential Revision: D17955287
fbshipit-source-id: 9c947cf98
Summary:
The name had rotten: it should be `AddrHistPair`. There is little value
of exposing the type of the pair `AbstractValue.t * ValueHistory.t`,
just inline its definition everywhere.
Reviewed By: ezgicicek
Differential Revision: D17955283
fbshipit-source-id: d145251e0
Summary:
See explanations in D17955104.
This renames `AbstractAddress` to `AbstractValue` since they are not
necessarily addresses.
Reviewed By: ezgicicek
Differential Revision: D17955290
fbshipit-source-id: 8bb4c61f2
Summary:
See explanations in D17955104. I put Attributes inside PulseAttribute
instead of creating a new file to avoid exposing more internals about
ranks.
Reviewed By: ezgicicek
Differential Revision: D17955284
fbshipit-source-id: a8719a58f
Summary:
bigmacro_bender
There are 3 ways pulse tracks history. This is at least one too many. So
far, we have:
1. "histories": a humble list of "events" like "assigned here", "returned from call", ...
2. "interproc actions": a structured nesting of calls with a final "action", eg "f calls g calls h which does blah"
3. "traces", which combine one history with one interproc action
This diff gets rid of interproc actions and makes histories include
"nested" callee histories too. This allows pulse to track and display
how a value got assigned across function calls.
Traces are now more powerful and interleave histories and interproc
actions. This allows pulse to track how a value is fed into an action,
for instance performed in callee, which itself creates some more
(potentially now interprocedural) history before going to the next step
of the action (either another call or the action itself).
This gives much better traces, and some examples are added to showcase
this.
There are a lot of changes when applying summaries to keep track of
histories more accurately than was done before, but also a few
simplifications that give additional evidence that this is the right
concept.
Reviewed By: skcho
Differential Revision: D17908942
fbshipit-source-id: 3b62eaf78
Summary:
When we know "x = 3" and we have a condition "x != 3" we know we can
prune the corresponding path.
Reviewed By: skcho
Differential Revision: D17665472
fbshipit-source-id: 988958ea6
Summary:
Turns out `Memory.add_attributes` was only used to add singletons so
deleted that in the process.
Reviewed By: skcho
Differential Revision: D17627725
fbshipit-source-id: 0abe3889d
Summary:
Introduce a new experimental checker (`--impurity`) that detects
impurity information, tracking which parameters and global variables
of a function are modified. The checker relies on Pulse to detect how
the state changes: it traverses the pre and post pairs starting from
the parameter/global variable and finds where the pre and post heaps
diverge. At diversion points, we expect to see WrittenTo/Invalid attributes
containing a trace of how the address was modified. We use these to
construct the trace of impurity.
This checker is a complement to the purity checker that exists mainly
for Java (and used for cost and loop-hoisting analyses). The aim of
this new experimental checker is to rely on Pulse's precise
memory treatment and come up with a more precise im(purity)
analysis. To distinguish the two checkers, we introduce a new issue
type `IMPURE_FUNCTION` that reports when a function is impure, rather
than when it is pure (as in the purity checker).
TODO:
- improve the analysis to rely on impurity information of external
library calls. Currently, all library calls are assumed to be nops,
hence pure.
- de-entangle Pulse reporting from analysis.
Reviewed By: skcho
Differential Revision: D17051567
fbshipit-source-id: 5e10afb4f
Summary:
Pulse didn't treat local variables going out of scope as invalidating the corresponding address in memory. This diff fixes that by
- marking all local variables that exits the scope with the attribute `AddressOfStackVariable`
- before we write the summary for the proc, we make sure to invalidate all such addresses local to the procedure as `Invalid.` If such an address is read, then we would raise a use-after-lifetime issue.
Reviewed By: jvillard
Differential Revision: D16458355
fbshipit-source-id: 3686524cb
Summary: We know how to do interprocedural calls so let's use that!
Reviewed By: mbouaziz
Differential Revision: D16008164
fbshipit-source-id: 4c34bf704
Summary:
Fixes a false positive where the address of a C++ temporary is bound to
a static const reference variable then returned. The fix doesn't try to
establish that the variable is a const reference so could lead to false
negatives but that can be addressed later.
Reviewed By: ezgicicek
Differential Revision: D16004538
fbshipit-source-id: e403dbefe
Summary:
[apologies for the unreviewable diff...]
Get rid of HIL expressions in pulse. This finishes the HIL -> SIL
migration. The first step made pulse start from SIL instructions but
would translate most accesses to HIL to re-use most of the existing
pulse code. This diff gets rid of the intermediate translation of SIL
expressions to HIL expressions.
Big changes:
1. `PulseOperations` mostly rewritten, driven by using `Exp.t` instead of `HilExp.AccessExpression.t` for everything.
2. Stop trying to reverse-engineer what addresses mean in terms of
access paths from program variables. Rely on the trace pointing at
the right places in the code to be enough. This is because it wasn't
that useful (and could even be misleading when wrong) but could be
prohibitively expensive in degenerate cases (eg nodes with tens of
thousands of successive array accesses...)
3. `PulseAbductiveDomain.apply_post` now returns the computed return
value instead of recording it itself.
4. Change of vocabulary: `materialize` -> `eval`, `crumb` -> `event`
5. Function calls arguments are now evaluated prior to doing anything
else, which saves everything else from having to (remember to) do
that. In particular, this changes how models look quite a bit.
Reviewed By: mbouaziz
Differential Revision: D15986373
fbshipit-source-id: 1d79935de
Summary:
Now that HIL doesn't help us anymore we need to reconstruct its mapping
"SIL logical var -> program access path". We already have everything we
need in pulse: it suffices to walk the current memory graph starting
from program variables until we find the value of the temporary we are
interested in.
This diff also builds some type machinery to make sure all accesses are
explained.
Reviewed By: mbouaziz
Differential Revision: D15824959
fbshipit-source-id: 722c81b39
Summary:
Just moving code around.
This is needed later to make some types in `PulseTrace` depend on
a new that I'll have to define in `PulseDomain`.
Also, this gives better names all around I think
Reviewed By: mbouaziz
Differential Revision: D15881281
fbshipit-source-id: e86c1472e
Summary:
Just moving code around.
This is needed later to make some types in `PulseInvalidation` depend on
a new type that I'll have to define in `PulseDomain`.
Reviewed By: mbouaziz
Differential Revision: D15824962
fbshipit-source-id: 86cba2bfb
Summary:
Before: the trace would explain how a value was invalidated and
accessed, but not how the value that was invalidated had been
constructed.
Now: `PulseTrace.t` records breadcrumbs of how the value was constructed
in addition to the interproc "action" trace leading to the invalidation
or access action.
Concretely:
```
void bad(X &x) {
X *y = x;
X *z = x;
delete y;
access(z);
}
```
will produce the trace:
Invalidation part:
y = x
delete y
Access part:
z = x
access(z)
access to z->f inside of access(z)
Before this diff the "Access part" would be missing the "z = x" part of
the trace, so it might be confusing why `z` has anything to do with `y`.
However, such "breadcrumbs" are not recorded in the inter-procedural
part, only the sequence of calls is. This is a trade-off for simplicity,
maybe it's enough for developers maybe it isn't, we'll find out later.
Reviewed By: jberdine
Differential Revision: D15354438
fbshipit-source-id: 8d0aed717
Summary:
In preparation for the next diff that re-uses `PulseTrace.t` for a type
that combines breadcrumbs + action.
No change intended.
Reviewed By: mbouaziz, jberdine
Differential Revision: D15354437
fbshipit-source-id: cbb8757b4
Summary:
Feedback from peterogithub:
- mention which access path is being invalidated and accessed in the message
- mention the line at which it was invalidated (the line at which it's accessed is already the line at which we report)
- traces for stack variable/C++ temporary address escapes
- delete double implementation of the same functionality in
`PulseTrace`: `location_of_action_start` is the same as
`outer_location_of_action`...
Reviewed By: jberdine
Differential Revision: D14800294
fbshipit-source-id: 3d9ab9b3d