Summary:
For arithmetic terms that are a single monomial, Arith.trms is
currently the singleton iterator containing the term itself. In
particular, Arith.trms is not the *sub*terms in this case. In this
case the principal constructor is multiplication. This diff fixes
these cases and defines Arith.trms to contain the factors of a
singleton monomial.
Reviewed By: jvillard
Differential Revision: D25883719
fbshipit-source-id: a88611bba
Summary:
No functional change. Mostly reorder definitions. Add some
tracing. Some documentation improvement. Remove a few unneeded
identifiers in patterns.
Reviewed By: jvillard
Differential Revision: D25883712
fbshipit-source-id: 1449a7f54
Summary:
Currently the equality classes are computed from the representatives
solution substitution when needed. This diff instead maintains them as
part of the representation of the context. By itself this does not
make a huge difference, but it is necessary to make other operations
incremental.
Reviewed By: jvillard
Differential Revision: D25883715
fbshipit-source-id: 1b444a0dc
Summary:
The solver for single equations no longer needs access to the internal
representation of the context.
Reviewed By: jvillard
Differential Revision: D25883722
fbshipit-source-id: 4ccd97674
Summary:
When `no_fresh` is true, then no fresh variables will be generated
while solving. So it is not necessary to provide a set with respect to
which variables must be generated fresh.
Reviewed By: jvillard
Differential Revision: D25883724
fbshipit-source-id: fd886067f
Summary:
Currently when solving an equation requires solving one or more other
equations, they are handled recursively. This diff reworks the solver
to instead queue pending equations in a list rather than eagerly
solving them eagerly. The pending list will be needed when changing
the Context.t representation since some equations will need to be
delayed until representation invariants are re-established.
Additionally, the solution is accumulated as an association list
rather than being eagerly incorporated into the context
representation. This enables the uses in equality solving and
quantifier elimination to use different representations.
Reviewed By: jvillard
Differential Revision: D25883727
fbshipit-source-id: 2f6b5efa3
Summary:
When used by the first-order solver, solve_extract may generate fresh
variables to express the solution substitutions, but when used by
quantifier elimination via solve_for_vars, fresh variables should not
be generated. This diff makes the difference between these use cases
simpler and clearer by replacing the obscure filter predicate argument
that is passed eventually to compose1 with a boolean indicating
whether fresh variables may be generated.
Reviewed By: jvillard
Differential Revision: D25756562
fbshipit-source-id: 53a35b71c
Summary:
Context.solve_for_vars returns a solution substitution consisting of
oriented equalities that are implied by the given context. It is
logically valid to express these equations using terms that are
normalized with respect to the solution substitution itself. This diff
normalizes uninterpreted terms with the solution substitution when
extending it. This preserves the logical strength of the solutions,
and strengthens other purely syntactic operations on the substitution,
such as Context.Subst.is_valid_eq.
Reviewed By: jvillard
Differential Revision: D25756582
fbshipit-source-id: cd997c46b
Summary:
Trade a bit more code for lowering complexity from linear to
logarithmic.
Reviewed By: jvillard
Differential Revision: D25756569
fbshipit-source-id: 83ad575fe
Summary:
Composing two substitutions does not need to require that their
domains are disjoint.
Leave disjointness check for composing a single mapping just to check
expected usage.
Reviewed By: jvillard
Differential Revision: D25756557
fbshipit-source-id: 04e92b864
Summary:
The overall operation of the quantifier elimination algorithm in
Sh.simplify is to first descend through the disjunctive structure of a
symbolic heap formula, process the leaves, and then proceed back up
the formula. At each point on the way back up, the first-order solver
is used to compute a solution substitution representing witnesses of
existential variables. This substitution is then used to normalize the
entire subformula at that point. Note that this results in
substituting and normalizing each subformula a number of times
proportional to its depth in the disjunctive structure.
This diff removes this redundancy and substitutes through each
subformula once. This is done by changing from an overall bottom-up to
top-down algorithm, and involves composing solution substitutions
rather than substituting multiple times. This change also heavily
relies on the strengthened Context.apply_and_elim operation, where the
bottom-up many-substitutions approach relies on the internal details
of repeated substitutions.
Reviewed By: jvillard
Differential Revision: D25756549
fbshipit-source-id: ca7cd814a
Summary:
The current implementation of quantifier elimination in Sh.simplify is
tightly coupled with the details of what the Context operations
support. In particular, successfully eliminating variables with
Context.elim effectively relies on being given a context that has been
transformed by Context.apply_subst. These operations are sound
independently, but achieving the desired result is delicate.
To simplify this situation, this diff refactors the tightly coupled
usage into a Context.apply_and_elim operation that hides the details
of the interaction inside the Context module. This enables an accurate
specification of apply_and_elim to be given much more simply than can
be done for the separate operations. This also simplifies the
implementation of Sh.simplify.
Reviewed By: jvillard
Differential Revision: D25756577
fbshipit-source-id: b344b3da6
Summary:
The current implementation of Context.elim crudely removes oriented
equations from terms involving the given variables. This is easy to
use in a way that violates the representation invariants of Context,
as well as destroys completeness. This diff resolves this by making
Context.elim remove the desired variables by rearranging the existing
equality classes, in particular promoting a new representative term
when the existing representative is to be removed. Also, since this
basic approach is incomplete for interpreted terms, they are detected
and not removed. As a result, the interface changes to return the set
of variables that have been removed.
Reviewed By: jvillard
Differential Revision: D25756573
fbshipit-source-id: 0eead9281
Summary:
Context.fold_uses_of should enumerate the transitive subterms of a
term rather than only the immediate subterms.
Reviewed By: jvillard
Differential Revision: D25756553
fbshipit-source-id: a3911d9f5
Summary:
Sh operations usually detect inconsistency where needed. But some
operations such as Context.inter must treat the unsat case
specially. This diff increases robustness by not relying on Sh to
detect inconsistency in order to get the correct context or pure
constraints, or to use the fast-paths through Context or Formula
operations.
Reviewed By: jvillard
Differential Revision: D25756550
fbshipit-source-id: 091439ff6
Summary:
Context.apply_subst erroneously resets everything in the
representation of a context except the solution substitution when
applying a substitution.
Reviewed By: jvillard
Differential Revision: D25756548
fbshipit-source-id: 949a34ced
Summary:
The first-order solver sometimes needs to generate fresh variables to
express the solution of equations. It needs to ensure that these
generated variables do not clash. Before this diff, there was a
confusion where new variables were fresh with respect to only the
current set of "universal" variables. This is wrong, and this diff
adds the full set of variables instead.
Reviewed By: jvillard
Differential Revision: D25196732
fbshipit-source-id: afc56834a
Summary:
Use the equality class information in the symbolic state to resolve
callees of indirect calls.
Reviewed By: jvillard
Differential Revision: D25146160
fbshipit-source-id: a1c39bbe1
Summary:
It was possible for the scope of a local to be incorrectly restored
when entering it for the first time in a caller after is was shadowed
by a callee. This could happen because scope management in the
analysis relies on renaming variables to adjust the vocabulary of
symbolic states. This was usually done, but optimizations of renaming
with a substitution whose domain is disjoint from the vocabulary of a
formula inadvertantly violated this vocabulary-adjustment
assumption. (Yes, this is too easy to get wrong.)
Reviewed By: jvillard
Differential Revision: D25146162
fbshipit-source-id: 30f2d657f
Summary: It is too easy to mix up multiple arguments of the same type.
Reviewed By: jvillard
Differential Revision: D24934116
fbshipit-source-id: 6e595b26e
Summary:
In practice this has not been observed to matter so far, since
treating `Splat N` as interpreted or uninterpreted does not matter
when `N` is a literal constant, and code seen so far only uses `Splat`
for zero initializers or memset with literal constant bytes.
Reviewed By: jvillard
Differential Revision: D24934118
fbshipit-source-id: 213e9724e
Summary:
0 and Splat 0 need to be treated the same since code relies on knowing
that 0 consists of all-0 bytes, and extracting a subsequence of a
Splat 0 yields 0. For example, initializing a struct to all-zeros and
then reading a member of pointer type out of it needs to produce the
null pointer. Therefore 0 and Splat 0 are redundant representations,
and all uses of Splat need to be updated to also handle 0.
This unfortunately leads to some near code duplication that seems to
be necessary. The issue is that 0 and Splat 0 are, from the backend's
perspective, constants in two distinct theories. Since 0 is chosen
over Splat 0 as the representation, the sequence theory solver needs
to treat 0 as if it was Splat 0, which duplicates some code handling
the general Splat cases.
Reviewed By: jvillard
Differential Revision: D24920758
fbshipit-source-id: 7c02be62b
Summary:
Global variables and function names in LLAIR are constant and so do
not need to be handled like normal assignable or shadowable
variables. This diff does this by changing the translation from LLAIR
to FOL to map globals and functions to uninterpreted constants instead
of variables.
Reviewed By: jvillard
Differential Revision: D24886571
fbshipit-source-id: efb8c9f49
Summary:
The computation of provable reachability through the heap currently
uses a set of variables whose values are either determined by the
desired roots or by the heap constraints. This requires globals to be
treated as variables. In preparation for distinguishing globals from
variables, this diff changes the reachability computation to use a set
of atomic terms instead of variables.
Reviewed By: jvillard
Differential Revision: D24886573
fbshipit-source-id: c0e6763b6
Summary:
No functional change, only simplifiying and making easier to
generalize.
Reviewed By: jvillard
Differential Revision: D24886572
fbshipit-source-id: e487b815d
Summary:
LLVM and Llair use a form of records, in particular for values of
constant structs and arrays. In Llair, these use standard `select` and
`update` operations a la McCarthy's theory of functional arrays, with
a compact `record` operation for constructing complete records. This
is fine and logically well-understood. The issue is that once
constructed, these values are accessed using instructions that (may)
operate over byte-ranges, rather than struct member indices. The
backend uses a theory of sequences to represent such values (the
contents of memory). So some code depends on high fidelity
interoperation between these two views.
This diff resolves this by removing the record theory from the backend
and instead encoding them using the sequence theory. The approach
taken keeps records in Llair and translates them to sequences in
Llair_to_Fol. This choice is made since the encoding into the sequence
theory involves terms that do not have types that are expressible in
terms of the source types. In particular, `(update r i e)`, is encoded
as the concatenation of the prefix of `r` up to the offset of index
`i`, followed by `e` (possibly with padding), and then the suffix of
`r` from index `i+1` on. The prefix and suffix sequences do not
necessarily have source-expressible types.
Reviewed By: jvillard
Differential Revision: D24800866
fbshipit-source-id: e7238c558
Summary:
The support for recursive references to globals from within their
initializers is enough to handle all the cases of recursive structs
that have been encountered so far. Therefore this diff removes the
complication of recursive records entirely.
Reviewed By: jvillard
Differential Revision: D24772955
fbshipit-source-id: f59f06257
Summary:
Change Arith.map to not descend through non-interpreted arithmetic
operators. For example, in `2×(x × y) + 3×z + 4`, `map ~f` will apply
`f` to the subterms `x × y` and `z`, but not `x` or `y`.
The logical notion of "subterm" that is needed by the solver does not
coincide with the representation. This is essentially due to not
"flattening" or "purifying" terms. That is, traditionally `x × y`
would not be permitted as an indeterminate of a polynomial. Instead, a
new variable would need to be introduced: `v = x × y` and then the
polynomial would be expressed as `2×v + 3×z + 4`. Taking maximal
non-interpreted subterms as the definition of "subterm" results in
subterms in the non-flattened representation that are equivalent to
those that would result from flattening the representation.
Reviewed By: jvillard
Differential Revision: D24746235
fbshipit-source-id: d8fcf46a1
Summary:
The implementation of Arithmetic relies on the partial projection from
terms to polynomials. This diff enables it to also embed polynomials
back into terms.
Reviewed By: jvillard
Differential Revision: D24746223
fbshipit-source-id: b6010e7b7
Summary:
Add a distinction between interpreted and uninterpreted arithmetic
terms, and use it in Context.classify. This enables correctly
classifying non-linear terms such as `x × y` as uninterpreted.
Reviewed By: ngorogiannis
Differential Revision: D24746228
fbshipit-source-id: 1a4b0e3bd
Summary:
In the process of computing `Context.solve`, fresh variables can be
generated. Not all of these end up in the final solution
substitution. Currently all of the freshly generated variables are
returned to the client, which leads to extraneous existentials. This
diff trims the returned fresh variables to only those that appear in
the final solution.
Reviewed By: ngorogiannis
Differential Revision: D24746241
fbshipit-source-id: 59a2f221b
Summary:
When exceptions are used due to the lack of goto, use `raise_notrace`
instead of `raise` to avoid the overhead of populating the backtrace.
Reviewed By: ngorogiannis
Differential Revision: D24630525
fbshipit-source-id: c5051d9c4