|
|
|
|
@ -130,22 +130,16 @@ F $\sum_{n=1}^{\infty} \frac{\sqrt{n+\sqrt{n}}}{n^2+1}$
|
|
|
|
|
|
|
|
|
|
6.计算 $\lim\limits_{x \to \infty} \left( \tan^2 \frac{2}{x} + \cos \frac{1}{x} \right)^{x^2}$。
|
|
|
|
|
|
|
|
|
|
**解析:**
|
|
|
|
|
这是 $1^\infty$ 型极限,令 $t = \frac{1}{x}$,则当 $x \to \infty$ 时 $t \to 0^+$,原极限化为:
|
|
|
|
|
$$\lim\limits_{t \to 0^+} \left( \tan^2 (2t) + \cos t \right)^{\frac{1}{t^2}}.$$
|
|
|
|
|
利用等价无穷小和泰勒展开:
|
|
|
|
|
|
|
|
|
|
- $\tan(2t) \sim 2t$,所以 $\tan^2(2t) \sim 4t^2$;
|
|
|
|
|
|
|
|
|
|
- $\cos t = 1 - \frac{t^2}{2} + o(t^2)$。
|
|
|
|
|
因此:
|
|
|
|
|
$$\tan^2(2t) + \cos t = 4t^2 + 1 - \frac{t^2}{2} + o(t^2) = 1 + \frac{7}{2}t^2 + o(t^2).$$
|
|
|
|
|
取对数:
|
|
|
|
|
$$\ln \left[ \left( 1 + \frac{7}{2}t^2 + o(t^2) \right)^{\frac{1}{t^2}} \right] = \frac{1}{t^2} \ln \left( 1 + \frac{7}{2}t^2 + o(t^2) \right) = \frac{1}{t^2} \left( \frac{7}{2}t^2 + o(t^2) \right) = \frac{7}{2} + o(1).$$
|
|
|
|
|
所以原极限为 $e^{7/2}$。
|
|
|
|
|
|
|
|
|
|
**解析:** $$\begin{aligned}
|
|
|
|
|
\lim\limits_{x \to \infty} \left( \tan^2 \frac{2}{x} + \cos \frac{1}{x} \right)^{x^2}
|
|
|
|
|
&=\lim\limits_{x\to\infty}(1+\tan^2\frac{2}{x}+\cos \frac{1}{x}-1)^{\frac{1}{\tan^2\frac{2}{x}+\cos \frac{1}{x}-1}\cdot x^2\cdot(\tan^2\frac{2}{x}+\cos \frac{1}{x}-1)}
|
|
|
|
|
\\&=e^{\lim\limits_{x\to\infty}\frac{\tan^2\frac{2}{x}+\cos \frac{1}{x}-1}{\frac{1}{x^2}}}
|
|
|
|
|
\\&\overset{t=\frac{1}{x}}{=}e^{\lim\limits_{t\to0}\frac{\tan^2(2t)+\cos t-1}{t^2}}
|
|
|
|
|
\\&=e^{\lim\limits_{t\to0}\frac{4t^2}{t^2}-\frac{\frac{1}{2}t^2}{t^2}}(四则运算和等价无穷小)
|
|
|
|
|
\\&=e^{\frac{7}{2}}
|
|
|
|
|
\end{aligned}$$
|
|
|
|
|
|
|
|
|
|
**答案:** $e^{7/2}$
|
|
|
|
|
**答案:** $e^{\frac{7}{2}}$
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|