|
|
|
|
#include <numeric>//包含了C++标准库中的<numeric>头文件,提供了数值计算的相关函数和模板。
|
|
|
|
|
#include <ctime>//包含了C++标准库中的<ctime>头文件,提供了关于时间和日期的相关函数和类型。
|
|
|
|
|
|
|
|
|
|
#include "easypr/train/annCh_train.h"//包含了EasyPR库中的annCh_train.h头文件,这个头文件可能包含了用于训练ANN(人工神经网络)字符识别的相关函数和类。
|
|
|
|
|
#include "easypr/config.h"//包含了EasyPR库的config.h头文件,这个头文件可能包含了一些配置EasyPR库的全局变量和宏定义。
|
|
|
|
|
#include "easypr/core/chars_identify.h"//包含了EasyPR库的chars_identify.h头文件,这个头文件可能包含了字符识别的核心功能的声明。
|
|
|
|
|
#include "easypr/core/feature.h"//包含了EasyPR库的feature.h头文件,这个头文件可能包含了特征提取和处理的相关的函数和类。
|
|
|
|
|
#include "easypr/core/core_func.h"//包含了EasyPR库的core_func.h头文件,这个头文件可能包含了一些核心的函数和类。
|
|
|
|
|
#include "easypr/util/util.h"//包含了EasyPR库的util.h头文件,这个头文件可能包含了一些工具函数和类。
|
|
|
|
|
#include "easypr/train/create_data.h"//包含了EasyPR库的create_data.h头文件,这个头文件可能包含了用于创建训练数据的函数和类。
|
|
|
|
|
|
|
|
|
|
namespace easypr { // 定义命名空间easypr
|
|
|
|
|
|
|
|
|
|
AnnChTrain::AnnChTrain(const char* chars_folder, const char* xml) // 定义构造函数,参数为字符文件夹路径和xml文件路径
|
|
|
|
|
: chars_folder_(chars_folder), ann_xml_(xml) // 初始化chars_folder_和ann_xml_成员变量
|
|
|
|
|
{
|
|
|
|
|
ann_ = cv::ml::ANN_MLP::create(); // 创建一个MLP(Multilayer Perceptron,多层感知器)对象,用于字符识别
|
|
|
|
|
type = 1; // 初始化type为1,可能表示某种类型或模式
|
|
|
|
|
kv_ = std::shared_ptr<Kv>(new Kv); // 创建一个Kv对象,并使用std::shared_ptr管理内存,实现共享所有权模型
|
|
|
|
|
kv_->load("resources/text/province_mapping"); // 加载kv_对象,可能从文件"resources/text/province_mapping"中加载数据
|
|
|
|
|
extractFeature = getGrayPlusProject; // 初始化extractFeature函数指针,指向getGrayPlusProject函数,用于特征提取
|
|
|
|
|
}
|
|
|
|
|
void AnnChTrain::train()
|
|
|
|
|
{
|
|
|
|
|
int classNumber = 0; // 类别数量,初始化为0,需要在后续代码中赋值
|
|
|
|
|
int input_number = 0; // 输入节点数量,初始化为0,需要在后续代码中赋值
|
|
|
|
|
int hidden_number = 0; // 隐藏层节点数量,初始化为0,需要在后续代码中赋值
|
|
|
|
|
int output_number = 0; // 输出节点数量,初始化为0,需要在后续代码中赋值
|
|
|
|
|
|
|
|
|
|
bool useLBP = false; // 是否使用LBP特征,初始化为false
|
|
|
|
|
if (useLBP) // 如果使用LBP特征
|
|
|
|
|
input_number = kCharLBPPatterns * kCharLBPGridX * kCharLBPGridY; // 则设置输入节点数量为LBP特征的数量
|
|
|
|
|
else
|
|
|
|
|
input_number = kGrayCharHeight * kGrayCharWidth; // 否则设置输入节点数量为字符图像的高度和宽度的乘积
|
|
|
|
|
|
|
|
|
|
input_number += 64; // 在输入节点数量基础上加64,可能是为了增加一些额外的输入节点
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
classNumber = kChineseNumber; // 类别数量,这里假设 kChineseNumber 是一个定义好的常量
|
|
|
|
|
hidden_number = kCharHiddenNeurons; // 隐藏层节点数量,这里假设 kCharHiddenNeurons 是一个定义好的常量
|
|
|
|
|
output_number = classNumber; // 输出节点数量,等于类别数量
|
|
|
|
|
cv::Mat layers; // 声明一个 OpenCV 的 Mat 对象,用于存储网络层的数据,但在这段代码中没有使用
|
|
|
|
|
|
|
|
|
|
int first_hidden_neurons = 48; // 第一隐藏层节点数量,硬编码为48
|
|
|
|
|
int second_hidden_neurons = 32; // 第二隐藏层节点数量,硬编码为32
|
|
|
|
|
|
|
|
|
|
int N = input_number; // 输入节点数量,这里假设 input_number 是一个定义好的变量
|
|
|
|
|
int m = output_number; // 输出节点数量,等于类别数量,这里假设 output_number 是一个定义好的变量
|
|
|
|
|
|
|
|
|
|
// 在这里注释掉了两行代码,它们原先可能是用于计算第一层和第二层隐藏层的节点数量的公式
|
|
|
|
|
//int first_hidden_neurons = int(std::sqrt((m + 2) * N) + 2 * std::sqrt(N / (m + 2)));
|
|
|
|
|
//int second_hidden_neurons = int(m * std::sqrt(N / (m + 2)));
|
|
|
|
|
|
|
|
|
|
bool useTLFN = false; // 是否使用TLFN,初始化为false,但在这段代码中没有使用
|
|
|
|
|
|
|
|
|
|
if (!useTLFN) { // 如果不使用两层神经网络(TLFN)
|
|
|
|
|
layers.create(1, 3, CV_32SC1); // 创建一个1行3列的OpenCV Mat对象,数据类型为32位有符号整数
|
|
|
|
|
layers.at<int>(0) = input_number; // 设置输入层节点数量
|
|
|
|
|
layers.at<int>(1) = hidden_number; // 设置隐藏层节点数量
|
|
|
|
|
layers.at<int>(2) = output_number; // 设置输出层节点数量
|
|
|
|
|
}
|
|
|
|
|
else { // 如果使用两层神经网络(TLFN)
|
|
|
|
|
fprintf(stdout, ">> Use two-layers neural networks,\n"); // 打印信息到标准输出,表示正在使用两层神经网络
|
|
|
|
|
fprintf(stdout, ">> First_hidden_neurons: %d \n", first_hidden_neurons); // 打印第一层隐藏层节点数量到标准输出
|
|
|
|
|
fprintf(stdout, ">> Second_hidden_neurons: %d \n", second_hidden_neurons); // 打印第二层隐藏层节点数量到标准输出
|
|
|
|
|
|
|
|
|
|
layers.create(1, 4, CV_32SC1); // 创建一个1行4列的OpenCV Mat对象,数据类型为32位有符号整数
|
|
|
|
|
layers.at<int>(0) = input_number; // 设置输入层节点数量
|
|
|
|
|
layers.at<int>(1) = first_hidden_neurons; // 设置第一层隐藏层节点数量
|
|
|
|
|
layers.at<int>(2) = second_hidden_neurons; // 设置第二层隐藏层节点数量
|
|
|
|
|
layers.at<int>(3) = output_number; // 设置输出层节点数量
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 设置神经网络层的大小
|
|
|
|
|
ann_->setLayerSizes(layers);
|
|
|
|
|
|
|
|
|
|
// 设置激活函数为Sigmoid函数,其对称性取决于第二个参数,第三个参数是该函数的斜率
|
|
|
|
|
ann_->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM, 1, 1);
|
|
|
|
|
|
|
|
|
|
// 设置训练方法为反向传播法
|
|
|
|
|
ann_->setTrainMethod(cv::ml::ANN_MLP::TrainingMethods::BACKPROP);
|
|
|
|
|
|
|
|
|
|
// 设置训练终止条件为最大迭代次数30000次,或当误差小于0.0001时终止
|
|
|
|
|
ann_->setTermCriteria(cvTermCriteria(CV_TERMCRIT_ITER, 30000, 0.0001));
|
|
|
|
|
|
|
|
|
|
// 设置权重的更新比例因子为0.1
|
|
|
|
|
ann_->setBackpropWeightScale(0.1);
|
|
|
|
|
|
|
|
|
|
// 设置权重的动量更新比例因子为0.1
|
|
|
|
|
ann_->setBackpropMomentumScale(0.1);
|
|
|
|
|
|
|
|
|
|
// 获取文件夹中的文件列表,如果文件列表为空,则打印错误信息并给出建议
|
|
|
|
|
auto files = Utils::getFiles(chars_folder_);
|
|
|
|
|
if (files.size() == 0) {
|
|
|
|
|
fprintf(stdout, "No file found in the train folder!\n");
|
|
|
|
|
fprintf(stdout, "You should create a folder named \"tmp\" in EasyPR main folder.\n");
|
|
|
|
|
fprintf(stdout, "Copy train data folder(like \"annCh\") under \"tmp\". \n");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 使用原始数据或原始数据 + 合成的数据进行训练和验证,具体数量由 m_number_for_count 决定
|
|
|
|
|
trainVal(m_number_for_count);
|
|
|
|
|
|
|
|
|
|
// 定义一个方法,用于识别汉字
|
|
|
|
|
// 参数:输入图像
|
|
|
|
|
// 返回值:一个由汉字字符串和对应的省份字符串组成的pair
|
|
|
|
|
std::pair<std::string, std::string> AnnChTrain::identifyGrayChinese(cv::Mat input) {
|
|
|
|
|
// 定义特征向量
|
|
|
|
|
Mat feature;
|
|
|
|
|
// 从输入图像中提取特征
|
|
|
|
|
extractFeature(input, feature);
|
|
|
|
|
// 初始化最大值为-2
|
|
|
|
|
float maxVal = -2;
|
|
|
|
|
// 初始化结果为0
|
|
|
|
|
int result = 0;
|
|
|
|
|
|
|
|
|
|
// 定义输出矩阵,大小为1行,kChineseNumber列,数据类型为CV_32FC1(32位浮点型)
|
|
|
|
|
cv::Mat output(1, kChineseNumber, CV_32FC1);
|
|
|
|
|
// 使用神经网络模型进行预测,输入特征向量,输出结果到output矩阵中
|
|
|
|
|
ann_->predict(feature, output);
|
|
|
|
|
|
|
|
|
|
// 遍历输出矩阵中的每一个值
|
|
|
|
|
for (int j = 0; j < kChineseNumber; j++) {
|
|
|
|
|
// 获取当前位置的值
|
|
|
|
|
float val = output.at<float>(j);
|
|
|
|
|
// 如果当前值大于maxVal,则更新maxVal和result的值
|
|
|
|
|
//std::cout << "j:" << j << "val:" << val << std::endl;
|
|
|
|
|
if (val > maxVal) {
|
|
|
|
|
maxVal = val;
|
|
|
|
|
result = j;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 根据result的值计算索引index,注意这里进行了偏移操作,可能是因为字符集的索引与输出结果的索引之间存在偏移
|
|
|
|
|
auto index = result + kCharsTotalNumber - kChineseNumber;
|
|
|
|
|
// 根据索引获取对应的字符key
|
|
|
|
|
const char* key = kChars[index];
|
|
|
|
|
// 将字符key转换为字符串s
|
|
|
|
|
std::string s = key;
|
|
|
|
|
// 通过kv_(应该是某个键值对容器)获取与s对应的省份字符串,存储到province变量中
|
|
|
|
|
std::string province = kv_->get(s);
|
|
|
|
|
|
|
|
|
|
// 返回一个由字符s和省份province组成的pair对象
|
|
|
|
|
return std::make_pair(s, province);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 定义一个方法,用于测试模型性能(目前为空)
|
|
|
|
|
void AnnChTrain::test() {
|
|
|
|
|
// TODO: 需要实现测试代码,评估模型的性能指标,如准确率、召回率等。
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 定义一个方法,用于训练验证集(目前为空)
|
|
|
|
|
void AnnChTrain::trainVal(size_t number_for_count) {
|
|
|
|
|
// 断言chars_folder_不为空,否则会抛出异常(TODO: 需要实现断言失败的处理逻辑)
|
|
|
|
|
assert(chars_folder_);
|
|
|
|
|
// 定义训练样本的存储容器train_samples(TODO: 这里需要解释这个变量名和变量的具体含义)
|
|
|
|
|
cv::Mat train_samples;
|
|
|
|
|
// 定义训练图像、验证图像的存储容器(TODO: 这里需要解释这些变量名和变量的具体含义)
|
|
|
|
|
std::vector<cv::Mat> train_images, val_images;
|
|
|
|
|
std::vector<int> train_label, val_labels;
|
|
|
|
|
// 设置训练验证集分割比例为0.7(70%用于训练,30%用于验证)
|
|
|
|
|
float percentage = 0.7f;
|
|
|
|
|
// 设置类别数为kChineseNumber(TODO: 需要解释这个变量的具体含义)直接把代码改成评注形式
|
|
|
|
|
|
|
|
|
|
// 循环遍历每个字符类别
|
|
|
|
|
for (int i = 0; i < classNumber; ++i) {
|
|
|
|
|
// 从kChars数组中获取当前字符的键
|
|
|
|
|
auto char_key = kChars[i + kCharsTotalNumber - classNumber];
|
|
|
|
|
// 定义一个字符数组sub_folder,用于存储子文件夹的路径,并初始化为0
|
|
|
|
|
char sub_folder[512] = { 0 };
|
|
|
|
|
// 使用sprintf函数将字符键和字符文件夹路径拼接,存入sub_folder
|
|
|
|
|
sprintf(sub_folder, "%s/%s", chars_folder_, char_key);
|
|
|
|
|
// 将字符键转化为字符串类型,方便后续操作
|
|
|
|
|
std::string test_char(char_key);
|
|
|
|
|
// 如果test_char不等于"zh_yun",则跳过当前循环
|
|
|
|
|
// if (test_char != "zh_yun") continue;
|
|
|
|
|
fprintf(stdout, ">> Testing characters %s in %s \n", char_key, sub_folder);
|
|
|
|
|
// 调用utils::getFiles函数获取子文件夹下的所有文件,存入chars_files
|
|
|
|
|
auto chars_files = utils::getFiles(sub_folder);
|
|
|
|
|
// 获取子文件夹下的文件数量
|
|
|
|
|
size_t char_size = chars_files.size();
|
|
|
|
|
fprintf(stdout, ">> Characters count: %d \n", (int)char_size);
|
|
|
|
|
|
|
|
|
|
// 定义一个向量matVec,用于存储处理过的图像
|
|
|
|
|
std::vector<cv::Mat> matVec;
|
|
|
|
|
// 为matVec预留空间,提高性能
|
|
|
|
|
matVec.reserve(number_for_count);
|
|
|
|
|
// 内层循环,遍历子文件夹下的每一个文件
|
|
|
|
|
for (auto file : chars_files) {
|
|
|
|
|
std::cout << file << std::endl;
|
|
|
|
|
// 使用OpenCV的imread函数读取图像,并将其转化为灰度图像
|
|
|
|
|
auto img = cv::imread(file, IMREAD_GRAYSCALE); // a grayscale image
|
|
|
|
|
Mat img_resize;
|
|
|
|
|
// 为img_resize分配空间,并设置其大小和数据类型
|
|
|
|
|
img_resize.create(kGrayCharHeight, kGrayCharWidth, CV_8UC1);
|
|
|
|
|
// 使用OpenCV的resize函数调整图像大小
|
|
|
|
|
resize(img, img_resize, img_resize.size(), 0, 0, INTER_LINEAR);
|
|
|
|
|
// 将调整大小后的图像存入matVec
|
|
|
|
|
matVec.push_back(img_resize);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 生成合成图像
|
|
|
|
|
// genrate the synthetic images
|
|
|
|
|
for (int t = 0; t < (int)number_for_count - (int)char_size; t++) {
|
|
|
|
|
// 确定随机数的范围
|
|
|
|
|
int rand_range = char_size + t;
|
|
|
|
|
// 生成一个随机数
|
|
|
|
|
int ran_num = rand() % rand_range;
|
|
|
|
|
// 从matVec中获取一个图像
|
|
|
|
|
auto img = matVec.at(ran_num);
|
|
|
|
|
// 显示该图像
|
|
|
|
|
SHOW_IMAGE(img, 0);
|
|
|
|
|
// 生成合成图像
|
|
|
|
|
auto simg = generateSyntheticImage(img);
|
|
|
|
|
// 显示合成图像
|
|
|
|
|
SHOW_IMAGE(simg, 0);
|
|
|
|
|
// 将合成图像添加到matVec中
|
|
|
|
|
matVec.push_back(simg);
|
|
|
|
|
}
|
|
|
|
|
// 输出matVec的大小
|
|
|
|
|
fprintf(stdout, ">> Characters count: %d \n", (int)matVec.size());
|
|
|
|
|
|
|
|
|
|
// 对matVec进行随机排序
|
|
|
|
|
// random sort the mat;
|
|
|
|
|
srand(unsigned(time(NULL)));
|
|
|
|
|
random_shuffle(matVec.begin(), matVec.end());
|
|
|
|
|
|
|
|
|
|
// 获取matVec的大小
|
|
|
|
|
int mat_size = (int)matVec.size();
|
|
|
|
|
// 计算分割索引
|
|
|
|
|
int split_index = int((float)mat_size * percentage);
|
|
|
|
|
// 从后往前遍历matVec
|
|
|
|
|
for (int j = mat_size - 1; j >= 0; j--) {
|
|
|
|
|
// 从matVec中获取图像
|
|
|
|
|
Mat img = matVec.at(j);
|
|
|
|
|
// 此处代码可能有误,因为该判断语句始终为真,无法起到分割训练集和验证集的作用
|
|
|
|
|
// 应该根据split_index来分割训练集和验证集
|
|
|
|
|
if (1) {
|
|
|
|
|
Mat feature;
|
|
|
|
|
// 提取图像特征
|
|
|
|
|
extractFeature(img, feature);
|
|
|
|
|
if (j <= split_index) {
|
|
|
|
|
// 将特征和图像添加到训练样本和训练图像中
|
|
|
|
|
train_samples.push_back(feature);
|
|
|
|
|
train_images.push_back(img);
|
|
|
|
|
train_label.push_back(i);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// 将图像添加到验证图像中,将标签添加到验证标签中
|
|
|
|
|
val_images.push_back(img);
|
|
|
|
|
val_labels.push_back(i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// generate train data
|
|
|
|
|
train_samples.convertTo(train_samples, CV_32F);
|
|
|
|
|
cv::Mat train_classes = cv::Mat::zeros((int)train_label.size(), classNumber, CV_32F);
|
|
|
|
|
for (int i = 0; i < train_classes.rows; ++i)
|
|
|
|
|
train_classes.at<float>(i, train_label[i]) = 1.f;
|
|
|
|
|
auto train_data = cv::ml::TrainData::create(train_samples, cv::ml::SampleTypes::ROW_SAMPLE, train_classes);
|
|
|
|
|
|
|
|
|
|
// train the data, calculate the cost time
|
|
|
|
|
std::cout << "Training ANN chinese model, please wait..." << std::endl;
|
|
|
|
|
long start = utils::getTimestamp();
|
|
|
|
|
ann_->train(train_data);
|
|
|
|
|
long end = utils::getTimestamp();
|
|
|
|
|
ann_->save(ann_xml_);
|
|
|
|
|
std::cout << "Your ANN Model was saved to " << ann_xml_ << std::endl;
|
|
|
|
|
std::cout << "Training done. Time elapse: " << (end - start) / (1000 * 60) << "minute" << std::endl;
|
|
|
|
|
|
|
|
|
|
// test the accuracy_rate in train
|
|
|
|
|
if (1) {
|
|
|
|
|
int corrects_all = 0, sum_all = train_images.size();
|
|
|
|
|
std::cout << "train_images size: " << sum_all << std::endl;
|
|
|
|
|
for (size_t i = 0; i < train_images.size(); ++i) {
|
|
|
|
|
cv::Mat img = train_images.at(i);
|
|
|
|
|
int label = train_label.at(i);
|
|
|
|
|
auto char_key = kChars[label + kCharsTotalNumber - classNumber];
|
|
|
|
|
std::pair<std::string, std::string> ch = identifyGrayChinese(img);
|
|
|
|
|
if (ch.first == char_key)
|
|
|
|
|
corrects_all++;
|
|
|
|
|
}
|
|
|
|
|
float accuracy_rate = (float)corrects_all / (float)sum_all;
|
|
|
|
|
std::cout << "Train error_rate: " << (1.f - accuracy_rate) * 100.f << "% "<< std::endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// test the accuracy_rate in val
|
|
|
|
|
if (1) {
|
|
|
|
|
int corrects_all = 0, sum_all = val_images.size();
|
|
|
|
|
std::cout << "val_images: " << sum_all << std::endl;
|
|
|
|
|
for (size_t i = 0; i < val_images.size(); ++i) {
|
|
|
|
|
cv::Mat img = val_images.at(i);
|
|
|
|
|
int label = val_labels.at(i);
|
|
|
|
|
auto char_key = kChars[label + kCharsTotalNumber - classNumber];
|
|
|
|
|
std::pair<std::string, std::string> ch = identifyGrayChinese(img);
|
|
|
|
|
if (ch.first == char_key)
|
|
|
|
|
corrects_all++;
|
|
|
|
|
}
|
|
|
|
|
float accuracy_rate = (float)corrects_all / (float)sum_all;
|
|
|
|
|
std::cout << "Test error_rate: " << (1.f - accuracy_rate) * 100.f << "% "<< std::endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::Ptr<cv::ml::TrainData> AnnChTrain::tdata() {
|
|
|
|
|
assert(chars_folder_);
|
|
|
|
|
|
|
|
|
|
cv::Mat samples;
|
|
|
|
|
std::vector<int> labels;
|
|
|
|
|
|
|
|
|
|
std::cout << "Collecting chars in " << chars_folder_ << std::endl;
|
|
|
|
|
|
|
|
|
|
int classNumber = 0;
|
|
|
|
|
if (type == 0) classNumber = kCharsTotalNumber;
|
|
|
|
|
if (type == 1) classNumber = kChineseNumber;
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < classNumber; ++i) {
|
|
|
|
|
auto char_key = kChars[i + kCharsTotalNumber - classNumber];
|
|
|
|
|
char sub_folder[512] = {0};
|
|
|
|
|
|
|
|
|
|
sprintf(sub_folder, "%s/%s", chars_folder_, char_key);
|
|
|
|
|
std::cout << " >> Featuring characters " << char_key << " in "
|
|
|
|
|
<< sub_folder << std::endl;
|
|
|
|
|
|
|
|
|
|
auto chars_files = utils::getFiles(sub_folder);
|
|
|
|
|
for (auto file : chars_files) {
|
|
|
|
|
auto img = cv::imread(file, 0); // a grayscale image
|
|
|
|
|
auto fps = charFeatures2(img, kPredictSize);
|
|
|
|
|
|
|
|
|
|
samples.push_back(fps);
|
|
|
|
|
labels.push_back(i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::Mat samples_;
|
|
|
|
|
samples.convertTo(samples_, CV_32F);
|
|
|
|
|
cv::Mat train_classes =
|
|
|
|
|
cv::Mat::zeros((int)labels.size(), classNumber, CV_32F);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < train_classes.rows; ++i) {
|
|
|
|
|
train_classes.at<float>(i, labels[i]) = 1.f;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return cv::ml::TrainData::create(samples_, cv::ml::SampleTypes::ROW_SAMPLE,
|
|
|
|
|
train_classes);
|
|
|
|
|
}
|
|
|
|
|
}
|