完成ditto平台上的编码

master
HuangJintao 5 months ago
parent a317d886f8
commit d46c9d4dbe

@ -1,6 +1,7 @@
import sys
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
import json
import time
from colorama import init, Fore

@ -1,3 +1,6 @@
import sys
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
import itertools
import pickle
import random
@ -12,8 +15,7 @@ import torch.nn.functional
from tqdm import tqdm
from setting import *
import sys
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
# note 对表进行嵌入时定位了有空值的cell, 计算相似度时有空值则置为-1.0000

@ -1,5 +1,6 @@
import os
import sys
import time
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
@ -8,7 +9,9 @@ import pickle
import torch
import json
import numpy as np
import pandas as pd
import random
from tqdm import tqdm
from setting import *
from colorama import Fore
from argparse import Namespace
@ -50,11 +53,12 @@ def matching(hpo_config):
hp.batch_size = hpo_config['batch_size']
hp.max_len = hpo_config['max_len']
hp.lr = 3e-5
hp.n_epochs = 20
# hp.n_epochs = 20
hp.n_epochs = 2
# hp.finetuning
hp.save_model = True
hp.input_path = config['testset']
hp.output_path = '/root/autodl-tmp/output/matched_small.jsonl'
hp.output_path = '/root/autodl-tmp/output/predictions.jsonl'
hp.logdir = '/root/autodl-tmp/checkpoints/'
hp.checkpoint_path = '/root/autodl-tmp/checkpoints/'
@ -106,7 +110,7 @@ def matching(hpo_config):
hp.lm, hp.use_gpu, hp.fp16)
summarizer = dk_injector = None
pdb.set_trace()
if hp.summarize:
summarizer = Summarizer(config, hp.lm)
@ -120,18 +124,116 @@ def matching(hpo_config):
lm=hp.lm,
dk_injector=dk_injector,
threshold=threshold)
# todo indicators
# write results
# interpretability
indicators = {}
predictions_raw = pd.read_json(hp.output_path, encoding='ISO-8859-1', lines=True)
predictions = pd.read_csv(directory_path + '/test_whole.csv', encoding='ISO-8859-1')
predictions['predicted'] = predictions_raw['match']
indicators = evaluate_prediction(predictions, 'label', 'predicted')
predictions.drop(columns='_id', inplace=True)
predictions = predictions.reset_index(drop=True)
predictions = predictions.astype(str)
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
predictions['confidence'] = 0
predictions['md'] = ''
epl_match = 0 # 可解释预测match
if len(md_list) > 0:
for row in tqdm(predictions.itertuples()):
if str(getattr(row, 'predicted')) == str(1):
conf, md_dict = is_explicable(row, md_list, sim_tensor_dict)
if conf > 0:
predictions.loc[row[0], 'confidence'] = conf
predictions.loc[row[0], 'md'] = str(md_dict)
epl_match += 1
df = predictions[predictions['predicted'] == str(1)]
interpretability = epl_match / len(df) # 可解释性
indicators['interpretability'] = interpretability
performance = interpre_weight * interpretability + (1 - interpre_weight) * indicators["F1"]
indicators['performance'] = performance
print(Fore.BLUE + f'ER Indicators: {indicators}')
predictions.to_csv(er_output_dir + '/predictions.csv', sep=',', index=False, header=True)
print(Fore.CYAN + f'Finish Time: {time.time()}')
return indicators
# todo ml_er function
def evaluate_prediction(prediction_: pd.DataFrame, labeled_attr: str, predicted_attr: str) -> dict:
new_df = prediction_.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
return {"precision": precision, "recall": recall, "F1": F1}
def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame):
predictions_attrs = predictions.columns.values.tolist()
col_tuple_list = []
for _ in predictions_attrs:
if _.startswith('ltable'):
left_index = predictions_attrs.index(_)
right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_'))
col_tuple_list.append((left_index, right_index))
length = predictions.shape[0]
# width = predictions.shape[1]
predictions = predictions.reset_index(drop=True)
sentences = predictions.values.flatten(order='F').tolist()
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True)
split_embedding = torch.split(embedding, length, dim=0)
table_tensor = torch.stack(split_embedding, dim=0, out=None)
# prediction的归一化嵌入张量
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
sim_tensor_dict = {}
for col_tuple in col_tuple_list:
lattr_tensor = norm_table_tensor[col_tuple[0]]
rattr_tensor = norm_table_tensor[col_tuple[1]]
mul_tensor = lattr_tensor * rattr_tensor
sim_tensor = torch.sum(mul_tensor, 1)
sim_tensor = torch.round(sim_tensor * 100) / 100
sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor
return sim_tensor_dict
def is_explicable(row, all_mds: list, st_dict):
attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段
for md_tuple in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
if st_dict[a][row[0]].item() < md_tuple[0][a]:
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return md_tuple[2], md_tuple[0] # 任意一条md能解释直接返回
return -1.0, {} # 遍历结束,不能解释
def ml_er(config: Configuration):
indicators = matching(config)
output_path = er_output_dir + "/eval_result.txt"
with open(output_path, 'w') as _f:
_f.write('precision:' + str(indicators['precision']) + '\n')
_f.write('recall:' + str(indicators['recall']) + '\n')
_f.write('F1:' + str(indicators["F1"]) + '\n')
_f.write('interpretability:' + str(indicators['interpretability']) + '\n')
_f.write('performance:' + str(indicators['performance']) + '\n')

@ -6,7 +6,7 @@ er_output_dir = '/root/hjt/md_bayesian_er_ditto/ml_er/output'
md_output_dir = '/root/hjt/md_bayesian_er_ditto/md_discovery/output'
hpo_output_dir = '/root/hjt/md_bayesian_er_ditto/hpo/output'
# model = SentenceTransformer('/root/hjt/all-MiniLM-L6-v2')
model = SentenceTransformer('/root/hjt/all-MiniLM-L6-v2')
interpre_weight = 0 # 可解释性权重
support_threshold = 1
confidence_threshold = 0.75

Loading…
Cancel
Save