You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

553 lines
14 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Global namespace opened in each source file by the build system *)
include (
Base :
sig
include
(module type of Base
(* prematurely deprecated, remove and use Stdlib instead *)
with module Filename := Base.Filename
and module Format := Base.Format
and module Marshal := Base.Marshal
and module Scanf := Base.Scanf
and type ('ok, 'err) result := ('ok, 'err) Base.result
[@warning "-3"])
end )
(* undeprecate *)
external ( == ) : 'a -> 'a -> bool = "%eq"
external ( != ) : 'a -> 'a -> bool = "%noteq"
exception Not_found = Caml.Not_found
include Stdio
module Command = Core.Command
module Hash_queue = Core_kernel.Hash_queue
(** Tuple operations *)
let fst3 (x, _, _) = x
let snd3 (_, y, _) = y
let trd3 (_, _, z) = z
(** Function combinators *)
let ( >> ) f g x = g (f x)
let ( << ) f g x = f (g x)
let ( $ ) f g x = f x ; g x
let ( $> ) x f = f x ; x
let ( <$ ) f x = f x ; x
(** Pretty-printing *)
type 'a pp = Formatter.t -> 'a -> unit
type ('a, 'b) fmt = ('a, 'b) Trace.fmt
(** Failures *)
let fail = Trace.fail
exception Unimplemented of string
let todo fmt = Trace.raisef (fun msg -> Unimplemented msg) fmt
let warn fmt =
let fs = Format.std_formatter in
Format.pp_open_box fs 2 ;
Format.pp_print_string fs "Warning: " ;
Format.kfprintf
(fun fs () ->
Format.pp_close_box fs () ;
Format.pp_force_newline fs () )
fs fmt
(** Assertions *)
let assertf cnd fmt =
if not cnd then fail fmt
else Format.ikfprintf (fun _ () -> ()) Format.str_formatter fmt
let checkf cnd fmt =
if not cnd then fail fmt
else Format.ikfprintf (fun _ () -> true) Format.str_formatter fmt
let check f x =
assert (f x ; true) ;
x
let violates f x =
assert (f x ; true) ;
assert false
type 'a or_error = ('a, exn * Caml.Printexc.raw_backtrace) result
let or_error f x () =
try Ok (f x) with exn -> Error (exn, Caml.Printexc.get_raw_backtrace ())
(** Extensions *)
module Invariant = struct
include Base.Invariant
let invariant here t sexp_of_t f =
assert (
( try f ()
with exn ->
let bt = Caml.Printexc.get_raw_backtrace () in
let exn =
Error.to_exn
(Error.create_s
(Base.Sexp.message "invariant failed"
[ ("", sexp_of_exn exn)
; ("", Source_code_position.sexp_of_t here)
; ("", sexp_of_t t) ]))
in
Caml.Printexc.raise_with_backtrace exn bt ) ;
true )
end
let map_preserving_phys_equal map t ~f =
let change = ref false in
let t' =
map t ~f:(fun x ->
let x' = f x in
if not (x' == x) then change := true ;
x' )
in
if !change then t' else t
let filter_map_preserving_phys_equal filter_map t ~f =
let change = ref false in
let t' =
filter_map t ~f:(fun x ->
let x'_opt = f x in
( match x'_opt with
| Some x' when x' == x -> ()
| _ -> change := true ) ;
x'_opt )
in
if !change then t' else t
module type Applicative_syntax = sig
type 'a t
val ( let+ ) : 'a t -> ('a -> 'b) -> 'b t
val ( and+ ) : 'a t -> 'b t -> ('a * 'b) t
end
module type Monad_syntax = sig
include Applicative_syntax
val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t
val ( and* ) : 'a t -> 'b t -> ('a * 'b) t
end
module Option = struct
include Base.Option
let pp fmt pp_elt fs = function
| Some x -> Format.fprintf fs fmt pp_elt x
| None -> ()
let cons xo xs = match xo with Some x -> x :: xs | None -> xs
module Monad_syntax = struct
type nonrec 'a t = 'a t
let ( let+ ) x f = map ~f x
let ( and+ ) x y = both x y
let ( let* ) x f = bind ~f x
let ( and* ) x y = both x y
end
end
include Option.Monad_infix
include Option.Monad_syntax
module List = struct
include Base.List
let rec pp ?pre ?suf sep pp_elt fs = function
| [] -> ()
| x :: xs ->
Option.iter pre ~f:(Format.fprintf fs) ;
pp_elt fs x ;
( match xs with
| [] -> ()
| xs -> Format.fprintf fs "%( %)%a" sep (pp sep pp_elt) xs ) ;
Option.iter suf ~f:(Format.fprintf fs)
let pop_exn = function x :: xs -> (x, xs) | [] -> raise Not_found
let find_map_remove xs ~f =
let rec find_map_remove_ ys = function
| [] -> None
| x :: xs -> (
match f x with
| Some x' -> Some (x', rev_append ys xs)
| None -> find_map_remove_ (x :: ys) xs )
in
find_map_remove_ [] xs
let fold_option xs ~init ~f =
With_return.with_return
@@ fun {return} ->
Some
(fold xs ~init ~f:(fun acc elt ->
match f acc elt with Some res -> res | None -> return None ))
let filter_map_preserving_phys_equal t ~f =
filter_map_preserving_phys_equal filter_map t ~f
let map_preserving_phys_equal t ~f = map_preserving_phys_equal map t ~f
let rev_map_unzip xs ~f =
fold xs ~init:([], []) ~f:(fun (ys, zs) x ->
let y, z = f x in
(y :: ys, z :: zs) )
let remove_exn ?(equal = phys_equal) xs x =
let rec remove_ ys = function
| [] -> raise Not_found
| z :: xs ->
if equal x z then rev_append ys xs else remove_ (z :: ys) xs
in
remove_ [] xs
let remove ?equal xs x =
try Some (remove_exn ?equal xs x) with Not_found -> None
let rec rev_init n ~f =
if n = 0 then []
else
let n = n - 1 in
let xs = rev_init n ~f in
f n :: xs
let symmetric_diff ~compare xs ys =
let rec symmetric_diff_ xxs yys =
match (xxs, yys) with
| x :: xs, y :: ys ->
let ord = compare x y in
if ord = 0 then symmetric_diff_ xs ys
else if ord < 0 then Either.First x :: symmetric_diff_ xs yys
else Either.Second y :: symmetric_diff_ xxs ys
| xs, [] -> map ~f:Either.first xs
| [], ys -> map ~f:Either.second ys
in
symmetric_diff_ (sort ~compare xs) (sort ~compare ys)
let pp_diff ~compare sep pp_elt fs (xs, ys) =
let pp_diff_elt fs elt =
match (elt : _ Either.t) with
| First x -> Format.fprintf fs "-- %a" pp_elt x
| Second y -> Format.fprintf fs "++ %a" pp_elt y
in
pp sep pp_diff_elt fs (symmetric_diff ~compare xs ys)
end
module type OrderedType = sig
type t
val compare : t -> t -> int
val sexp_of_t : t -> Sexp.t
end
exception Duplicate
module Map = struct
module type S = sig
type key
type +'a t
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val sexp_of_t : ('a -> Sexp.t) -> 'a t -> Sexp.t
val t_of_sexp : (Sexp.t -> key) -> (Sexp.t -> 'a) -> Sexp.t -> 'a t
val pp : key pp -> 'a pp -> 'a t pp
val pp_diff :
data_equal:('a -> 'a -> bool)
-> key pp
-> 'a pp
-> ('a * 'a) pp
-> ('a t * 'a t) pp
(* initial constructors *)
val empty : 'a t
(* constructors *)
val set : 'a t -> key:key -> data:'a -> 'a t
val add_exn : 'a t -> key:key -> data:'a -> 'a t
val add_multi : 'a list t -> key:key -> data:'a -> 'a list t
val remove : 'a t -> key -> 'a t
val update : 'a t -> key -> f:('a option -> 'a) -> 'a t
val merge :
'a t
-> 'b t
-> f:
( key:key
-> [`Both of 'a * 'b | `Left of 'a | `Right of 'b]
-> 'c option)
-> 'c t
val merge_skewed :
'a t -> 'a t -> combine:(key:key -> 'a -> 'a -> 'a) -> 'a t
val map : 'a t -> f:('a -> 'b) -> 'b t
val filter_keys : 'a t -> f:(key -> bool) -> 'a t
val filter_mapi : 'a t -> f:(key:key -> data:'a -> 'b option) -> 'b t
(* queries *)
val is_empty : 'b t -> bool
val length : 'b t -> int
val mem : 'a t -> key -> bool
val find : 'a t -> key -> 'a option
val find_and_remove : 'a t -> key -> ('a * 'a t) option
val find_multi : 'a list t -> key -> 'a list
val data : 'a t -> 'a list
val to_alist : 'a t -> (key * 'a) list
(* traversals *)
val iter : 'a t -> f:('a -> unit) -> unit
val iteri : 'a t -> f:(key:key -> data:'a -> unit) -> unit
val for_alli : 'a t -> f:(key:key -> data:'a -> bool) -> bool
val fold : 'a t -> init:'s -> f:(key:key -> data:'a -> 's -> 's) -> 's
end
module Make (Key : OrderedType) : S with type key = Key.t = struct
module M = Caml.Map.Make (Key)
type key = Key.t
type 'a t = 'a M.t
let compare = M.compare
let equal = M.equal
let sexp_of_t sexp_of_val m =
List.sexp_of_t
(Sexplib.Conv.sexp_of_pair Key.sexp_of_t sexp_of_val)
(M.bindings m)
let t_of_sexp key_of_sexp val_of_sexp sexp =
Caml.List.fold_left
(fun m (k, v) -> M.add k v m)
M.empty
(List.t_of_sexp
(Sexplib.Conv.pair_of_sexp key_of_sexp val_of_sexp)
sexp)
let pp pp_k pp_v fs m =
Format.fprintf fs "@[<1>[%a]@]"
(List.pp ",@ " (fun fs (k, v) ->
Format.fprintf fs "@[%a @<2>↦ %a@]" pp_k k pp_v v ))
(M.bindings m)
let pp_diff ~data_equal pp_key pp_val pp_diff_val fs (x, y) =
let pp_diff_val fs = function
| k, `Left v ->
Format.fprintf fs "-- [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v
| k, `Right v ->
Format.fprintf fs "++ [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v
| k, `Unequal vv ->
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_key k pp_diff_val vv
in
let sd =
M.merge
(fun _ v1o v2o ->
match (v1o, v2o) with
| Some v1, Some v2 when not (data_equal v1 v2) ->
Some (`Unequal (v1, v2))
| Some v1, None -> Some (`Left v1)
| None, Some v2 -> Some (`Right v2)
| _ -> None )
x y
in
if not (M.is_empty sd) then
Format.fprintf fs "[@[<hv>%a@]];@ "
(List.pp ";@ " pp_diff_val)
(M.bindings sd)
exception Duplicate
let empty = M.empty
let set m ~key ~data = M.add key data m
let add_exn m ~key ~data =
M.update key
(function None -> Some data | Some _ -> raise Duplicate)
m
let add_multi m ~key ~data =
M.update key
(function None -> Some [data] | Some vs -> Some (data :: vs))
m
let remove m k = M.remove k m
let update m k ~f = M.update k (fun vo -> Some (f vo)) m
let merge m n ~f =
M.merge
(fun k v1o v2o ->
match (v1o, v2o) with
| Some v1, Some v2 -> f ~key:k (`Both (v1, v2))
| Some v1, None -> f ~key:k (`Left v1)
| None, Some v2 -> f ~key:k (`Right v2)
| None, None -> None )
m n
let merge_skewed m n ~combine =
M.merge
(fun k v1o v2o ->
match (v1o, v2o) with
| Some v1, Some v2 -> Some (combine ~key:k v1 v2)
| Some _, None -> v1o
| None, Some _ -> v2o
| None, None -> None )
m n
let map m ~f = M.map f m
let filter_keys m ~f = M.filter (fun k _ -> f k) m
let filter_mapi m ~f =
M.fold
(fun k v m ->
match f ~key:k ~data:v with Some v' -> M.add k v' m | None -> m )
m M.empty
let is_empty = M.is_empty
let length = M.cardinal
let mem m k = M.mem k m
let find m k = M.find_opt k m
let find_and_remove m k =
let found = ref None in
let m =
M.update k
(fun v ->
found := v ;
None )
m
in
let+ v = !found in
(v, m)
let find_multi m k = try M.find k m with Not_found -> []
let data m = M.fold (fun _ v s -> v :: s) m []
let to_alist = M.bindings
let iter m ~f = M.iter (fun _ v -> f v) m
let iteri m ~f = M.iter (fun k v -> f ~key:k ~data:v) m
let for_alli m ~f = M.for_all (fun key data -> f ~key ~data) m
let fold m ~init ~f = M.fold (fun key data s -> f ~key ~data s) m init
end
end
module Result = struct
include Base.Result
let pp fmt pp_elt fs = function
| Ok x -> Format.fprintf fs fmt pp_elt x
| Error _ -> ()
end
module Vector = struct
include Vector
let pp sep pp_elt fs v = List.pp sep pp_elt fs (to_list v)
end
include Vector.Infix
module Set = struct
include Base.Set
type ('elt, 'cmp) tree = ('elt, 'cmp) Using_comparator.Tree.t
let equal_m__t (module Elt : Compare_m) = equal
let pp pp_elt fs x = List.pp ",@ " pp_elt fs (to_list x)
let pp_diff pp_elt fs (xs, ys) =
let lose = diff xs ys and gain = diff ys xs in
if not (is_empty lose) then Format.fprintf fs "-- %a" (pp pp_elt) lose ;
if not (is_empty gain) then Format.fprintf fs "++ %a" (pp pp_elt) gain
let disjoint x y = is_empty (inter x y)
let add_option yo x = Option.fold ~f:add ~init:x yo
let add_list ys x = List.fold ~f:add ~init:x ys
let diff_inter x y = (diff x y, inter x y)
let diff_inter_diff x y = (diff x y, inter x y, diff y x)
let of_vector cmp x = of_array cmp (Vector.to_array x)
let to_tree = Using_comparator.to_tree
let union x y =
let xy = union x y in
let xy_tree = to_tree xy in
if xy_tree == to_tree x then x
else if xy_tree == to_tree y then y
else xy
end
module Qset = struct
include Qset
let pp sep pp_elt fs s = List.pp sep pp_elt fs (to_list s)
end
module Array = struct
include Base.Array
let pp sep pp_elt fs a = List.pp sep pp_elt fs (to_list a)
end
module String = struct
include String
let t_of_sexp = Sexplib.Conv.string_of_sexp
let sexp_of_t = Sexplib.Conv.sexp_of_string
module Map = Map.Make (String)
end
module Q = struct
let pp = Q.pp_print
let hash = Hashtbl.hash
let hash_fold_t s q = Int.hash_fold_t s (hash q)
let sexp_of_t q = Sexp.Atom (Q.to_string q)
let t_of_sexp = function
| Sexp.Atom s -> Q.of_string s
| _ -> assert false
let of_z = Q.of_bigint
include Q
end
module Z = struct
let pp = Z.pp_print
let hash = [%hash: Z.t]
let hash_fold_t s z = Int.hash_fold_t s (hash z)
let sexp_of_t z = Sexp.Atom (Z.to_string z)
let t_of_sexp = function
| Sexp.Atom s -> Z.of_string s
| _ -> assert false
(* the signed 1-bit integers are -1 and 0 *)
let true_ = Z.minus_one
let false_ = Z.zero
let of_bool = function true -> true_ | false -> false_
let is_true = Z.equal true_
let is_false = Z.equal false_
include Z
end