You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2453 lines
93 KiB

5 years ago
(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Proofs about llvm to llair translation *)
open HolKernel boolLib bossLib Parse lcsymtacs;
5 years ago
open listTheory arithmeticTheory pred_setTheory finite_mapTheory wordsTheory integer_wordTheory;
open optionTheory rich_listTheory pathTheory alistTheory pairTheory sumTheory;
open settingsTheory miscTheory memory_modelTheory;
open llvmTheory llvm_propTheory llvm_ssaTheory llairTheory llair_propTheory llvm_to_llairTheory;
5 years ago
new_theory "llvm_to_llair_prop";
set_grammar_ancestry ["llvm", "llair", "llair_prop", "llvm_to_llair", "llvm_ssa"];
5 years ago
numLib.prefer_num ();
Definition translate_trace_def:
(translate_trace gmap Tau = Tau)
(translate_trace gmap Error = Error)
(translate_trace gmap (Exit i) = (Exit i))
(translate_trace gmap (W gv bytes) = W (translate_glob_var gmap gv) bytes)
End
5 years ago
Inductive v_rel:
(∀w. v_rel (FlatV (PtrV w)) (FlatV (IntV (w2i w) llair$pointer_size)))
5 years ago
(∀w. v_rel (FlatV (W1V w)) (FlatV (IntV (w2i w) 1)))
(∀w. v_rel (FlatV (W8V w)) (FlatV (IntV (w2i w) 8)))
(∀w. v_rel (FlatV (W32V w)) (FlatV (IntV (w2i w) 32)))
(∀w. v_rel (FlatV (W64V w)) (FlatV (IntV (w2i w) 64)))
(∀vs1 vs2.
list_rel v_rel vs1 vs2
v_rel (AggV vs1) (AggV vs2))
End
Definition take_to_call_def:
(take_to_call [] = [])
(take_to_call (i::is) =
if terminator i is_call i then [i] else i :: take_to_call is)
End
Definition num_calls_def:
num_calls is = length (filter is_call is)
End
(* TODO: remove?
Definition build_phi_block_def:
build_phi_block gmap emap f entry from_l to_l phis =
generate_move_block [(to_l, (translate_header (dest_fn f) gmap emap entry (Head phis ARB), (ARB:block)))]
(translate_label_opt (dest_fn f) entry from_l) to_l
End
Definition build_phi_emap_def:
build_phi_emap phis =
map (\x. case x of Phi r t _ => (r, Var (translate_reg r t))) phis
End
*)
Inductive pc_rel:
(* LLVM side points to a normal instruction *)
(∀prog emap ip bp d b idx b' prev_i gmap rest.
(* Both are valid pointers to blocks in the same function *)
dest_fn ip.f = label_to_fname bp
alookup prog ip.f = Some d
alookup d.blocks ip.b = Some b
ip.i = Offset idx
idx < length b.body
get_block (translate_prog prog) bp b'
(* The LLVM side is at the start of a block, or immediately following a
* call, which will also start a new block in llair *)
(idx 0 get_instr prog (ip with i := Offset (idx - 1)) (Inl prev_i) is_call prev_i)
(∃regs_to_keep.
(bp, b')::rest =
fst (translate_instrs (translate_label (dest_fn ip.f) ip.b (num_calls (take idx b.body)))
gmap emap regs_to_keep (take_to_call (drop idx b.body))))
pc_rel prog gmap emap ip bp)
(* If the LLVM side points to phi instructions, the llair side
* should point to a block generated from them *)
(∀prog gmap emap ip from_l phis to_l.
get_instr prog ip (Inr (from_l, phis))
ip.b = Some (Lab to_l)
(* We should have just jumped here from block from_l *)
(∃d b. alookup prog ip.f = Some d
alookup d.blocks from_l = Some b
ip.b set (map Some (instr_to_labs (last b.body))))
pc_rel prog gmap emap ip (Mov_name (dest_fn ip.f) (option_map dest_label from_l) to_l))
End
Definition untranslate_reg_def:
untranslate_reg (Var_name x t) = Reg x
End
(* Define when an LLVM state is related to a llair one.
* Parameterised on a map for locals relating LLVM registers to llair
5 years ago
* expressions that compute the value in that register. This corresponds to part
* of the translation's state.
*)
Definition emap_invariant_def:
emap_invariant prog emap ip locals locals' r =
∃v v' e.
v_rel v.value v'
flookup locals r = Some v
flookup emap r = Some e eval_exp <| locals := locals' |> e v'
(* Each register used in e is dominated by an assignment to that
* register for the entire live range of r. *)
(∀ip1 r'. ip1.f = ip.f r live prog ip1 r' exp_uses e
∃ip2. untranslate_reg r' assigns prog ip2 dominates prog ip2 ip1)
End
Definition local_state_rel_def:
local_state_rel prog emap ip locals locals'
(* Live LLVM registers are mapped and have a related value in the emap
* (after evaluating) *)
(∀r. r live prog ip emap_invariant prog emap ip locals locals' r)
End
Definition mem_state_rel_def:
mem_state_rel prog gmap emap (s:llvm$state) (s':llair$state)
local_state_rel prog emap s.ip s.locals s'.locals
reachable prog s.ip
fmap_rel (\(_,n) n'. w2n n = n')
s.globals
(s'.glob_addrs f_o translate_glob_var gmap)
heap_ok s.heap
erase_tags s.heap = s'.heap
s.status = s'.status
5 years ago
End
(* Define when an LLVM state is related to a llair one
* Parameterised on a map for locals relating LLVM registers to llair
* expressions that compute the value in that register. This corresponds to part
* of the translation's state.
*)
Definition state_rel_def:
state_rel prog gmap emap (s:llvm$state) (s':llair$state)
(s.status = Partial pc_rel prog gmap emap s.ip s'.bp)
mem_state_rel prog gmap emap s s'
End
Theorem mem_state_ignore_bp[simp]:
∀prog gmap emap s s' b.
mem_state_rel prog gmap emap s (s' with bp := b)
mem_state_rel prog gmap emap s s'
Proof
rw [local_state_rel_def, mem_state_rel_def, emap_invariant_def] >> eq_tac >> rw [] >>
first_x_assum drule >> rw [] >>
`eval_exp (s' with bp := b) e v' eval_exp s' e v'`
by (irule eval_exp_ignores >> rw []) >>
metis_tac []
QED
Triviality lemma:
((s:llair$state) with status := Complete code).locals = s.locals
Proof
rw []
QED
Theorem mem_state_rel_exited:
∀prog gmap emap s s' code.
mem_state_rel prog gmap emap s s'
mem_state_rel prog gmap emap (s with status := Complete code) (s' with status := Complete code)
Proof
rw [mem_state_rel_def, local_state_rel_def, emap_invariant_def] >>
metis_tac [eval_exp_ignores, lemma]
QED
Theorem mem_state_rel_no_update:
∀prog gmap emap s1 s1' v res_v r i i'.
assigns prog s1.ip = {}
mem_state_rel prog gmap emap s1 s1'
i next_ips prog s1.ip
mem_state_rel prog gmap emap (s1 with ip := i) s1'
Proof
rw [mem_state_rel_def, local_state_rel_def, emap_invariant_def]
>- (
first_x_assum (qspec_then `r` mp_tac) >> simp [Once live_gen_kill, PULL_EXISTS] >>
metis_tac [next_ips_same_func])
>- metis_tac [next_ips_reachable]
QED
Triviality record_lemma:
(<|locals := x|> :llair$state).locals = x
Proof
rw []
QED
Theorem mem_state_rel_update:
∀prog gmap emap s1 s1' v res_v r e i.
is_ssa prog
assigns prog s1.ip = {r}
mem_state_rel prog gmap emap s1 s1'
eval_exp s1' e res_v
v_rel v.value res_v
i next_ips prog s1.ip
(∀r_use. r_use exp_uses e
∃r_tmp. r_use exp_uses (translate_arg gmap emap (Variable r_tmp)) r_tmp live prog s1.ip)
mem_state_rel prog gmap (emap |+ (r, e))
(s1 with <|ip := i; locals := s1.locals |+ (r, v) |>)
s1'
Proof
rw [mem_state_rel_def, local_state_rel_def, emap_invariant_def]
>- (
rw [FLOOKUP_UPDATE]
>- (
HINT_EXISTS_TAC >> rw []
>- metis_tac [eval_exp_ignores, record_lemma] >>
first_x_assum drule >> rw [] >>
first_x_assum drule >> rw [] >>
fs [exp_uses_def, translate_arg_def] >>
pop_assum (qspec_then `s1.ip` mp_tac) >> simp [] >>
disch_then drule >> rw [] >>
`dominates prog s1.ip ip1`
by (
irule ssa_dominates_live_range_lem >> rw [] >>
metis_tac [next_ips_same_func]) >>
metis_tac [dominates_trans]) >>
`i.f = s1.ip.f` by metis_tac [next_ips_same_func] >> simp [] >>
first_x_assum irule >>
simp [Once live_gen_kill, PULL_EXISTS, METIS_PROVE [] ``x y (~y x)``] >>
metis_tac [])
>- metis_tac [next_ips_reachable]
QED
Theorem emap_inv_updates_keep_same_ip1:
∀prog emap ip locals locals' vs res_vs rtys r.
is_ssa prog
list_rel v_rel (map (\v. v.value) vs) res_vs
length rtys = length vs
r set (map fst rtys)
emap_invariant prog (emap |++ map (\(r,ty). (r, Var (translate_reg r ty))) rtys) ip
(locals |++ zip (map fst rtys, vs))
(locals' |++ zip (map (\(r,ty). translate_reg r ty) rtys, res_vs))
r
Proof
rw [emap_invariant_def, flookup_fupdate_list] >>
CASE_TAC >> rw []
>- (fs [ALOOKUP_NONE, MAP_REVERSE] >> rfs [MAP_ZIP]) >>
CASE_TAC >> rw []
>- (
fs [ALOOKUP_NONE, MAP_REVERSE, MAP_MAP_o, combinTheory.o_DEF] >>
fs [MEM_MAP, FORALL_PROD] >>
rw [] >> metis_tac [FST, pair_CASES]) >>
rename [`alookup (reverse (zip _)) _ = Some v`,
`alookup (reverse (map _ _)) _ = Some e`] >>
fs [Once MEM_SPLIT_APPEND_last] >>
fs [alookup_some, MAP_EQ_APPEND, reverse_eq_append] >> rw [] >>
rfs [zip_eq_append] >> rw [] >> rw [] >>
rename [`(fst rty, e)::reverse res = map _ rtys`] >>
Cases_on `rtys` >> fs [] >> pairarg_tac >> fs [] >> rw [] >>
fs [] >> rw [] >>
qpat_x_assum `reverse _ ++ _ = zip _` (mp_tac o GSYM) >> rw [zip_eq_append] >>
fs [] >> rw [] >>
rename [`[_] = zip (x,y)`] >>
Cases_on `x` >> Cases_on `y` >> fs [] >>
rw [] >> fs [LIST_REL_SPLIT1] >> rw [] >>
HINT_EXISTS_TAC >> rw []
>- (
rw [Once eval_exp_cases, flookup_fupdate_list] >>
qmatch_goalsub_abbrev_tac `reverse (zip (a, b))` >>
`length a = length b`
by (
rw [Abbr `a`, Abbr `b`] >>
metis_tac [LIST_REL_LENGTH, LENGTH_MAP, LENGTH_ZIP, LENGTH_REVERSE, ADD_COMM, ADD_ASSOC]) >>
CASE_TAC >> rw [] >> fs [alookup_some, reverse_eq_append]
>- (fs [ALOOKUP_NONE] >> rfs [MAP_REVERSE, MAP_ZIP] >> fs [Abbr `a`]) >>
rfs [zip_eq_append] >>
unabbrev_all_tac >>
rw [] >>
qpat_x_assum `reverse _ ++ _ = zip _` (mp_tac o GSYM) >> rw [zip_eq_append] >>
fs [] >> rw [] >>
rename [`[_] = zip (a,b)`] >>
Cases_on `a` >> Cases_on `b` >> fs [] >>
rw [] >> fs [] >> rw [] >>
fs [ALOOKUP_NONE] >> fs [] >>
rfs [SWAP_REVERSE_SYM] >> rw [] >> fs [MAP_REVERSE] >> rfs [MAP_ZIP] >>
fs [MIN_DEF] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >>
rfs [] >> rw [] >>
fs [MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
`(\(x:reg,y:ty). x) = fst` by (rw [FUN_EQ_THM] >> pairarg_tac >> rw []) >>
fs [] >>
rename [`map fst l1 ++ [fst _] ++ map fst l2 = l3 ++ [_] ++ l4`,
`map _ l1 ++ [translate_reg _ _] ++ _ = l5 ++ _ ++ l6`,
`l7 ++ [v1:llair$flat_v reg_v] ++ l8 = l9 ++ [v2] ++ l10`] >>
`map fst l2 = l4` by metis_tac [append_split_last] >>
`~mem (translate_reg (fst rty) ty) (map (λ(r,ty). translate_reg r ty) l2)`
by (
rw [MEM_MAP] >> pairarg_tac >> fs [] >>
Cases_on `rty` >>
rename1 `fst (r2, ty2)` >> Cases_on `r2` >> Cases_on `r` >>
fs [translate_reg_def, MEM_MAP] >> metis_tac [FST]) >>
`map (λ(r,ty). translate_reg r ty) l2 = l6` by metis_tac [append_split_last] >>
`length l8 = length l10` by metis_tac [LIST_REL_LENGTH, LENGTH_MAP] >>
metis_tac [append_split_eq])
>- (
fs [exp_uses_def] >> rw [] >>
Cases_on `fst rty` >> simp [translate_reg_def, untranslate_reg_def] >>
`∃ip. ip.f = ip1.f Reg s uses prog ip`
by (
qabbrev_tac `x = (ip1.f = ip.f)` >>
fs [live_def] >> qexists_tac `last (ip1::path)` >> rw [] >>
irule good_path_same_func >>
qexists_tac `ip1::path` >> rw [MEM_LAST] >>
metis_tac []) >>
metis_tac [ssa_dominates_live_range])
QED
Theorem emap_inv_updates_keep_same_ip2:
∀prog emap ip locals locals' vs res_vs rtys r.
is_ssa prog
r live prog ip
assigns prog ip = set (map fst rtys)
emap_invariant prog emap ip locals locals' r
list_rel v_rel (map (\v. v.value) vs) res_vs
length rtys = length vs
reachable prog ip
¬mem r (map fst rtys)
emap_invariant prog (emap |++ map (\(r,ty). (r, Var (translate_reg r ty))) rtys) ip
(locals |++ zip (map fst rtys, vs))
(locals' |++ zip (map (\(r,ty). translate_reg r ty) rtys, res_vs))
r
Proof
rw [emap_invariant_def, alistTheory.flookup_fupdate_list] >> rw [] >>
CASE_TAC >> rw []
>- (
CASE_TAC >> rw []
>- (
qexists_tac `v'` >> rw [] >>
`DRESTRICT (locals' |++ zip (map (λ(r,ty). translate_reg r ty) rtys, res_vs)) (exp_uses e) =
DRESTRICT locals' (exp_uses e)`
suffices_by metis_tac [eval_exp_ignores_unused, record_lemma] >>
rw [] >>
qmatch_goalsub_abbrev_tac `_ |++ l = _` >>
`l = []` suffices_by rw [FUPDATE_LIST_THM] >>
rw [Abbr `l`, FILTER_EQ_NIL, LAMBDA_PROD] >>
`(λ(p1,p2:llair$flat_v reg_v). p1 exp_uses e) = (\x. fst x exp_uses e)`
by (rw [EXTENSION, IN_DEF] >> pairarg_tac >> rw []) >>
`length rtys = length res_vs` by metis_tac [LIST_REL_LENGTH, LENGTH_MAP] >>
rw [every_zip_fst, EVERY_MAP] >> rw [LAMBDA_PROD] >>
rw [EVERY_EL] >> pairarg_tac >> rw [] >>
qmatch_goalsub_rename_tac `translate_reg r1 ty1 exp_uses _` >>
first_x_assum (qspecl_then [`ip`, `translate_reg r1 ty1`] mp_tac) >> rw [] >>
CCONTR_TAC >> fs [] >>
`ip2 = ip`
by (
fs [is_ssa_def, EXTENSION, IN_DEF] >>
Cases_on `r1` >> fs [translate_reg_def, untranslate_reg_def] >>
`assigns prog ip (Reg s)` suffices_by metis_tac [reachable_dominates_same_func] >>
rw [LIST_TO_SET_MAP, MEM_EL] >>
metis_tac [FST]) >>
metis_tac [dominates_irrefl]) >>
drule ALOOKUP_MEM >> rw [MEM_MAP] >>
pairarg_tac >> fs [MEM_MAP] >> rw [] >>
metis_tac [FST]) >>
drule ALOOKUP_MEM >> rw [MEM_MAP, MEM_ZIP] >>
metis_tac [EL_MEM, LIST_REL_LENGTH, LENGTH_MAP]
QED
Theorem local_state_rel_next_ip:
∀prog emap ip1 ip2 locals locals'.
local_state_rel prog emap ip1 locals locals'
ip2 next_ips prog ip1
(∀r. r assigns prog ip1 emap_invariant prog emap ip1 locals locals' r)
local_state_rel prog emap ip2 locals locals'
Proof
rw [local_state_rel_def, emap_invariant_def] >>
Cases_on `r live prog ip1` >> fs []
>- (
last_x_assum drule >> rw [] >>
ntac 3 HINT_EXISTS_TAC >> rw [] >>
first_x_assum irule >> rw [] >>
metis_tac [next_ips_same_func]) >>
pop_assum mp_tac >> simp [Once live_gen_kill, PULL_EXISTS] >> rw [] >>
first_x_assum (qspec_then `ip2` mp_tac) >> rw [] >>
first_x_assum drule >> rw [] >>
ntac 3 HINT_EXISTS_TAC >> rw [] >>
first_x_assum irule >> rw [] >>
metis_tac [next_ips_same_func]
QED
Theorem local_state_rel_updates_keep:
∀rtys prog emap ip locals locals' vs res_vs i.
is_ssa prog
set (map fst rtys) = assigns prog ip
local_state_rel prog emap ip locals locals'
length vs = length rtys
list_rel v_rel (map (\v. v.value) vs) res_vs
i next_ips prog ip
reachable prog ip
local_state_rel prog (emap |++ map (\(r,ty). (r, Var (translate_reg r ty))) rtys) i
(locals |++ zip (map fst rtys, vs))
(locals' |++ zip (map (\(r,ty). translate_reg r ty) rtys, res_vs))
Proof
rw [] >> irule local_state_rel_next_ip >>
qexists_tac `ip` >> rw [] >>
fs [local_state_rel_def] >> rw []
>- (irule emap_inv_updates_keep_same_ip1 >> rw []) >>
fs [local_state_rel_def] >> rw [] >>
Cases_on `mem r (map fst rtys)`
>- (irule emap_inv_updates_keep_same_ip1 >> rw []) >>
irule emap_inv_updates_keep_same_ip2 >> rw []
QED
Theorem local_state_rel_update_keep:
∀prog emap ip locals locals' v res_v r i ty.
is_ssa prog
assigns prog ip = {r}
local_state_rel prog emap ip locals locals'
v_rel v.value res_v
reachable prog ip
i next_ips prog ip
local_state_rel prog (emap |+ (r, Var (translate_reg r ty)))
i (locals |+ (r, v)) (locals' |+ (translate_reg r ty, res_v))
Proof
rw [] >>
drule local_state_rel_updates_keep >>
disch_then (qspecl_then [`[(r,ty)]`, `emap`, `ip`] mp_tac) >>
simp [] >> disch_then drule >>
disch_then (qspecl_then [`[v]`, `[res_v]`] mp_tac) >>
simp [] >> disch_then drule >>
rw [FUPDATE_LIST_THM]
QED
Theorem mem_state_rel_update_keep:
∀prog gmap emap s s' v res_v r ty i.
is_ssa prog
assigns prog s.ip = {r}
mem_state_rel prog gmap emap s s'
v_rel v.value res_v
reachable prog s.ip
i next_ips prog s.ip
mem_state_rel prog gmap (emap |+ (r, Var (translate_reg r ty)))
(s with <| ip := i; locals := s.locals |+ (r, v) |>)
(s' with locals := s'.locals |+ (translate_reg r ty, res_v))
Proof
rw [mem_state_rel_def]
>- metis_tac [local_state_rel_update_keep] >>
metis_tac [next_ips_reachable]
QED
Triviality lemma:
((s:llair$state) with heap := h).locals = s.locals
Proof
rw []
QED
Theorem mem_state_rel_heap_update:
∀prog gmap emap s s' h h'.
mem_state_rel prog gmap emap s s'
heap_ok h
erase_tags h = erase_tags h'
mem_state_rel prog gmap emap (s with heap := h) (s' with heap := h')
Proof
rw [mem_state_rel_def, erase_tags_def, local_state_rel_def] >>
rw [heap_component_equality] >>
fs [fmap_eq_flookup, FLOOKUP_o_f] >> rw [] >>
first_x_assum (qspec_then `x` mp_tac) >>
BasicProvers.EVERY_CASE_TAC >> rw [] >>
Cases_on `x'` >> Cases_on `x''` >> fs []
QED
Theorem alookup_translate_prog:
∀prog f d.
alookup prog (Fn f) = Some d
alookup (translate_prog prog).functions f = Some (translate_def f d (get_gmap prog))
Proof
rw [translate_prog_def] >>
qspec_tac (`get_gmap prog:glob_var |-> ty`, `gmap`) >>
Induct_on `prog` >>
rw [] >>
pairarg_tac >> fs [] >> rw [] >> Cases_on `fname` >> fs [dest_fn_def]
QED
Triviality dest_label_11:
dest_label x = dest_label y x = y
Proof
Cases_on `x` >> Cases_on `y` >> rw [dest_label_def]
QED
Theorem alookup_translate_instrs_mov:
∀l gmap emap r is bs emap' f from to.
translate_instrs l gmap emap r is = (bs, emap')
(∀f from to. l Mov_name f from to)
alookup bs (Mov_name f from to) = None
Proof
Induct_on `is` >> rw [translate_instrs_def] >> rw [] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >>
TRY pairarg_tac >> fs [] >> rw []
>- (
rename1 `add_to_first_block _ bs1` >>
`bs1 = [] ∃x y bs2. bs1 = (x,y)::bs2` by metis_tac [list_CASES, pair_CASES] >>
fs [add_to_first_block_def] >> rw [] >>
first_x_assum drule >> Cases_on `l` >> fs [inc_label_def] >>
rw [] >> metis_tac [NOT_SOME_NONE])
>- (first_x_assum drule >> Cases_on `l` >> fs [inc_label_def])
>- (
rename1 `add_to_first_block _ bs1` >>
`bs1 = [] ∃x y bs2. bs1 = (x,y)::bs2` by metis_tac [list_CASES, pair_CASES] >>
fs [add_to_first_block_def] >> rw [] >>
first_x_assum drule >> Cases_on `l` >> fs [inc_label_def] >>
rw [] >> metis_tac [NOT_SOME_NONE])
>- (first_x_assum drule >> Cases_on `l` >> fs [inc_label_def])
QED
Theorem alookup_translate_header_mov:
∀gmap r f emap to_l from_l x to_l' from_ls h.
(to_l' = None h = Entry)
alookup (translate_header f from_ls to_l' gmap emap h)
(Mov_name f (option_map dest_label from_l) to_l) = Some x
to_l' = Some (Lab to_l)
Proof
rw [] >>
Cases_on `to_l'` >> Cases_on `h` >> fs [translate_header_def] >>
drule ALOOKUP_MEM >> simp [MEM_MAP] >>
rw [] >>
Cases_on `x'` >> fs [dest_label_def]
QED
Triviality lab_dest_lab[simp]:
Lab (dest_label l) = l
Proof
Cases_on `l` >> rw [dest_label_def]
QED
Theorem alookup_translate_header:
∀f to_l gmap emap phis l from_l edges from_ls.
(mem (Some (Lab to_l), from_ls) edges mem from_l from_ls)
alookup (translate_header f from_ls (Some (Lab to_l)) gmap emap (Head phis l)) (Mov_name f (option_map dest_label from_l) to_l) None
Proof
rw [translate_header_def, ALOOKUP_NONE, MAP_MAP_o, combinTheory.o_DEF,
MEM_MAP, PULL_EXISTS, dest_label_def, MEM_FLAT] >>
Cases_on `from_l` >> fs [] >> rw [PULL_EXISTS] >>
metis_tac []
QED
Theorem mem_get_from_ls:
∀to_l blocks from_l.
mem from_l (get_from_ls to_l blocks)
∃b. mem (from_l, b) blocks mem to_l (map Some (instr_to_labs (last b.body)))
Proof
ho_match_mp_tac get_from_ls_ind >> rw [get_from_ls_def] >> metis_tac []
QED
Theorem alookup_translate_blocks_mov:
∀blocks to_l f gmap regs_to_keep edges from_l phis block emap.
mem (Some (Lab to_l)) (map fst blocks)
(∃from_ls. alookup edges (Some (Lab to_l)) = Some from_ls mem from_l from_ls)
every (\b. (snd b).h = Entry fst b = None) blocks
alookup blocks (Some (Lab to_l)) = Some block (∃l. block.h = Head phis l)
∃emap'.
alookup
(translate_blocks f gmap emap regs_to_keep edges blocks)
(Mov_name f (option_map dest_label from_l) to_l) =
Some (generate_move_block f gmap emap' phis from_l (Lab to_l))
Proof
Induct_on `blocks` >> rw [translate_blocks_def] >>
rename1 `alookup (bloc::blocks) (Some _) = Some _` >>
`∃l bl. bloc = (l,bl)` by metis_tac [pair_CASES] >>
fs [] >> rw [translate_block_def]
>- (
qexists_tac `emap` >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >> rw [] >>
rw [ALOOKUP_APPEND] >>
BasicProvers.EVERY_CASE_TAC >> fs []
>- metis_tac [alookup_translate_header, ALOOKUP_MEM]
>- metis_tac [label_distinct, alookup_translate_instrs_mov, NOT_NONE_SOME] >>
fs [translate_header_def, alookup_some, MAP_EQ_APPEND] >> rw [] >>
Cases_on `from_l` >> Cases_on `l_from` >> fs [] >>
metis_tac [dest_label_11]) >>
BasicProvers.EVERY_CASE_TAC >> fs [] >> rw []
>- (
qexists_tac `emap` >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >> rw [] >>
rw [ALOOKUP_APPEND] >>
BasicProvers.EVERY_CASE_TAC >> fs []
>- metis_tac [alookup_translate_header, ALOOKUP_MEM]
>- metis_tac [label_distinct, alookup_translate_instrs_mov, NOT_NONE_SOME] >>
fs [translate_header_def, alookup_some, MAP_EQ_APPEND] >> rw [] >>
Cases_on `from_l` >> Cases_on `l_from` >> fs [] >>
metis_tac [dest_label_11]) >>
first_x_assum drule >> simp [PULL_EXISTS] >>
rpt (disch_then drule) >>
pairarg_tac >> fs [] >>
fs [ALOOKUP_APPEND] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >>
pairarg_tac >> fs [] >> rw [] >>
fs [ALOOKUP_APPEND] >>
BasicProvers.EVERY_CASE_TAC >> fs []
>- metis_tac [label_distinct, alookup_translate_instrs_mov, NOT_NONE_SOME] >>
rw [] >>
metis_tac [label_distinct, alookup_translate_instrs_mov, NOT_NONE_SOME, alookup_translate_header_mov]
QED
Theorem get_block_translate_prog_mov:
∀prog f from_l to_l d b block phis.
prog_ok prog
alookup prog (Fn f) = Some d
alookup d.blocks from_l = Some b
mem (Lab to_l) (instr_to_labs (last b.body))
alookup d.blocks (Some (Lab to_l)) = Some block (∃l. block.h = Head phis l)
∃emap.
get_block (translate_prog prog)
(Mov_name f (option_map dest_label from_l) to_l)
(generate_move_block f (get_gmap prog) emap phis from_l (Lab to_l))
Proof
rw [get_block_cases, label_to_fname_def] >>
drule alookup_translate_prog >>
rw [] >> rw [translate_def_def] >>
irule alookup_translate_blocks_mov >>
rw []
>- (
simp [ALOOKUP_MAP_2, MEM_MAP, EXISTS_PROD] >>
drule ALOOKUP_MEM >> rw [mem_get_from_ls, MEM_MAP] >>
imp_res_tac ALOOKUP_MEM >>
metis_tac [])
>- (fs [prog_ok_def] >> res_tac >> fs [EVERY_MEM])
>- (
imp_res_tac ALOOKUP_MEM >>
fs [MEM_MAP] >>
metis_tac [FST])
QED
Theorem alookup_translate_header_lab:
(l = None h = Entry)
alookup (translate_header f from_ls l gmap emap h) (translate_label f l' i) = None
Proof
Cases_on `l` >> Cases_on `h` >> fs [translate_header_def] >>
Cases_on `l'` >> fs [translate_label_def, ALOOKUP_NONE, MEM_MAP] >>
rw [dest_label_def] >>
CCONTR_TAC >> fs [] >> rw [] >> fs [] >>
Cases_on `x'` >> fs [translate_label_def]
QED
Theorem alookup_translate_instrs_lab:
∀f l' i j gmap emap regs_to_keep b bs emap' l x.
translate_instrs (Lab_name f (option_map dest_label l') i) gmap emap regs_to_keep b = (bs,emap')
alookup bs (translate_label f l j) = Some x
l = l'
Proof
Induct_on `b` >> rw [translate_instrs_def] >> fs [] >>
rename1 `classify_instr ins` >>
Cases_on `classify_instr ins` >> fs []
>- (
pairarg_tac >> fs [] >>
Cases_on `r regs_to_keep` >> fs []
>- (
first_x_assum drule >>
Cases_on `bs'` >> fs [add_to_first_block_def] >> rw [] >> fs [] >>
rename1 `add_to_first_block _ (bl::_)` >>
Cases_on `bl` >> fs [add_to_first_block_def] >>
rename1 `lab = translate_label _ _ _` >>
Cases_on `lab = translate_label f l j` >> fs [] >> metis_tac []) >>
metis_tac [])
>- (
pairarg_tac >> fs [] >>
first_x_assum drule >>
Cases_on `bs'` >> fs [add_to_first_block_def] >> rw [] >> fs [] >>
rename1 `add_to_first_block _ (bl::_)` >>
Cases_on `bl` >> fs [add_to_first_block_def] >>
rename1 `lab = translate_label _ _ _` >>
Cases_on `lab = translate_label f l j` >> fs [] >> metis_tac [])
>- (
rw [] >> fs [ALOOKUP_def] >>
Cases_on `l` >> Cases_on `l'` >> fs [translate_label_def] >>
rename1 `translate_label _ (Some lname)` >>
Cases_on `lname` >> fs [translate_label_def] >> rw [])
>- (
pairarg_tac >> fs [] >> rw [] >> fs [ALOOKUP_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >>
rw []
>- (
Cases_on `l` >> fs [inc_label_def, translate_label_def] >>
rename1 `translate_label _ (Some lb)` >>
Cases_on `lb` >> fs [inc_label_def, translate_label_def]) >>
fs [inc_label_def] >>
metis_tac [])
QED
Triviality every_front:
∀P x y. y [] every P (front (x::y)) every P (front y)
Proof
Induct_on `y` >> rw []
QED
Theorem translate_instrs_first_lab:
∀dest_label l gmap emap regs_to_keep b bs emap l' b' emap'.
translate_instrs l gmap emap regs_to_keep b = ((l',b')::bs,emap')
l = l'
Proof
Induct_on `b` >> rw [translate_instrs_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >>
TRY pairarg_tac >> fs [] >> rw [] >>
TRY (Cases_on `bs'`) >> fs [add_to_first_block_def] >>
TRY (Cases_on `h'`) >> fs [add_to_first_block_def] >>
metis_tac []
QED
Triviality lab_translate_label:
∀f l j f' l' j'.
Lab_name f (option_map dest_label l) j = translate_label f' l' j'
f = f' l = l' j = j'
Proof
rw [] >> Cases_on `l` >> Cases_on `l'` >> fs [translate_label_def] >>
Cases_on `x` >> fs [translate_label_def, dest_label_def] >>
Cases_on `x'` >> fs [translate_label_def, dest_label_def]
QED
Theorem alookup_translate_instrs:
∀f l i j gmap emap regs_to_keep b bs emap' l x.
b []
terminator (last b)
every (λi. ¬terminator i) (front b)
i num_calls b
translate_instrs (Lab_name f (option_map dest_label l) j) gmap emap regs_to_keep b = (bs,emap')
alookup bs (translate_label f l (i + j))
=
Some (snd (el i (fst (translate_instrs (Lab_name f (option_map dest_label l) j)
gmap emap regs_to_keep b))))
Proof
Induct_on `b` >> rw [translate_instrs_def, num_calls_def] >>
rename1 `classify_instr instr`
>- (
Cases_on `instr` >> fs [is_call_def, classify_instr_def] >>
pairarg_tac >> fs [] >> rw [] >>
fs [lab_translate_label]
>- (
`i = 0` by fs [] >>
rw [] >> fs [] >>
qexists_tac `emap` >> rw []) >>
`b []` by (Cases_on `b` >> fs [terminator_def]) >>
fs [LAST_DEF, inc_label_def] >>
`0 < i` by fs [] >>
`i - 1 num_calls b` by fs [num_calls_def] >>
drule every_front >> disch_then drule >> rw [] >>
first_x_assum drule >> disch_then drule >> disch_then drule >> rw [] >>
rw [] >>
rw [EL_CONS, PRE_SUB1]) >>
Cases_on `classify_instr instr` >> fs [LAST_DEF]
>- (
`b []`
by (
Cases_on `b = []` >> Cases_on `instr` >> fs [is_call_def, classify_instr_def] >>
rw [] >> fs [terminator_def]) >>
fs [num_calls_def] >>
pairarg_tac >> fs [] >>
drule every_front >> disch_then drule >> rw [] >> fs [] >>
Cases_on `r regs_to_keep` >> fs []
>- metis_tac [] >>
Cases_on `bs'` >> fs [add_to_first_block_def] >>
first_x_assum drule >> disch_then drule >> rw [] >> fs [] >>
rename1 `add_to_first_block _ (i1::is)` >>
Cases_on `i1` >> fs [add_to_first_block_def] >>
rw [] >> fs [] >>
drule translate_instrs_first_lab >> rw [] >>
fs [lab_translate_label]
>- (`i = 0` by fs [] >> rw []) >>
`0 < i` by fs [] >>
rw [EL_CONS])
>- (
`b []`
by (
Cases_on `b = []` >> Cases_on `instr` >> fs [is_call_def, classify_instr_def] >>
rw [] >> fs [terminator_def]) >>
fs [num_calls_def] >>
pairarg_tac >> fs [] >>
rw [] >>
drule every_front >> disch_then drule >> rw [] >> fs [] >>
Cases_on `bs'` >> fs [add_to_first_block_def] >>
first_x_assum drule >> disch_then drule >> rw [] >> fs [] >>
rename1 `add_to_first_block _ (i1::is)` >>
Cases_on `i1` >> fs [add_to_first_block_def] >>
rw [] >> fs [] >>
drule translate_instrs_first_lab >> rw [] >>
fs [lab_translate_label]
>- (`i = 0` by fs [] >> rw []) >>
`0 < i` by fs [] >>
rw [EL_CONS])
>- (
`b = []`
by (
Cases_on `b` >> fs [] >>
Cases_on `instr` >> fs [terminator_def, classify_instr_def] >>
Cases_on `p` >> fs [classify_instr_def]) >>
fs [] >> rw [] >>
metis_tac [lab_translate_label])
>- (
Cases_on `instr` >> fs [is_call_def, classify_instr_def] >>
Cases_on `p` >> fs [classify_instr_def])
QED
Theorem translate_instrs_not_empty:
∀l gmap emap regs b.
b [] classify_instr (last b) = Term
∀emap2. translate_instrs l gmap emap regs b ([], emap2)
Proof
Induct_on `b` >> rw [translate_instrs_def] >>
CASE_TAC >> rw [] >> TRY pairarg_tac >> fs []
>- (
Cases_on `bs` >> fs [add_to_first_block_def] >>
Cases_on `b` >> fs []
>- metis_tac [] >>
rename1 `add_to_first_block _ (b::bs)` >>
Cases_on `b` >> fs [add_to_first_block_def]) >>
Cases_on `b` >> fs [] >>
Cases_on `bs` >> fs [add_to_first_block_def]
>- metis_tac [] >>
rename1 `add_to_first_block _ (b::bs)` >>
Cases_on `b` >> fs [add_to_first_block_def]
QED
Theorem alookup_translate_blocks:
∀blocks l f gmap emap regs_to_keep edges b b' i.
b.body []
terminator (last b.body)
every (λi. ¬terminator i) (front b.body)
every (\b. (snd b).h = Entry fst b = None) blocks
alookup blocks l = Some b
i num_calls b.body
∃emap'.
alookup (translate_blocks f gmap emap regs_to_keep edges blocks) (translate_label f l i)
=
Some (snd (el i (fst (translate_instrs (Lab_name f (option_map dest_label l) 0)
gmap emap' regs_to_keep b.body))))
Proof
ho_match_mp_tac ALOOKUP_ind >> simp [translate_blocks_def] >>
rpt strip_tac >>
pairarg_tac >> fs [ALOOKUP_APPEND] >>
rename1 `(if l' = l then _ else _) = Some _` >>
Cases_on `l = l'` >> fs [translate_block_def] >> rw []
>- (
pairarg_tac >> fs [] >> rw [] >> fs [ALOOKUP_APPEND] >>
`l = None b.h = Entry` by metis_tac [] >>
rfs [alookup_translate_header_lab] >>
imp_res_tac alookup_translate_instrs >>
fs [] >> rw [] >>
rfs [] >>
qexists_tac `emap |++ header_to_emap_upd b.h` >> rw [])
>- (
pairarg_tac >> fs [ALOOKUP_APPEND] >> rw [] >>
fs [ALOOKUP_APPEND] >>
rename1 `alookup (translate_header _ _ _ _ _ bloc.h)` >>
`l' = None bloc.h = Entry` by metis_tac [] >>
fs [alookup_translate_header_lab] >>
Cases_on `alookup bs (translate_label f l i)` >> fs [] >> rw [] >>
metis_tac [alookup_translate_instrs_lab])
QED
Theorem v_rel_bytes:
∀v v'. v_rel v v' llvm_value_to_bytes v = llair_value_to_bytes v'
5 years ago
Proof
ho_match_mp_tac v_rel_ind >>
rw [v_rel_cases, llvm_value_to_bytes_def, llair_value_to_bytes_def] >>
rw [value_to_bytes_def, llvmTheory.unconvert_value_def, w2n_i2n,
llairTheory.unconvert_value_def, llairTheory.pointer_size_def,
llvmTheory.pointer_size_def] >>
pop_assum mp_tac >>
qid_spec_tac `vs1` >>
Induct_on `vs2` >> rw [] >> rw []
5 years ago
QED
Theorem bytes_v_rel_lem:
(∀f s bs t.
f = (λn t w. convert_value t w)
s = type_to_shape t
first_class_type t
(quotient_pair$### v_rel $=)
(bytes_to_value f s bs)
(bytes_to_value (λn t w. convert_value t w) (type_to_shape (translate_ty t)) bs))
(∀f n s bs t.
f = (λn t w. convert_value t w)
s = type_to_shape t
first_class_type t
(quotient_pair$### (list_rel v_rel) $=)
(read_array f n s bs)
(read_array (λn t w. convert_value t w) n (type_to_shape (translate_ty t)) bs))
(∀f ss bs ts.
f = (λn t w. convert_value t w)
ss = map type_to_shape ts
every first_class_type ts
(quotient_pair$### (list_rel v_rel) $=)
(read_str f ss bs)
(read_str (λn t w. convert_value t w) (map (type_to_shape o translate_ty) ts) bs))
Proof
ho_match_mp_tac bytes_to_value_ind >>
rw [llvmTheory.type_to_shape_def, translate_ty_def, type_to_shape_def,
sizeof_def, llvmTheory.sizeof_def, bytes_to_value_def, pointer_size_def,
convert_value_def, llvmTheory.convert_value_def, quotient_pairTheory.PAIR_REL]
>- (
Cases_on `t'` >>
fs [llvmTheory.type_to_shape_def, llvmTheory.sizeof_def, llvmTheory.first_class_type_def] >>
TRY (Cases_on `s`) >>
rw [llvmTheory.sizeof_def, le_read_num_def, translate_size_def,
convert_value_def, llvmTheory.convert_value_def, translate_ty_def,
type_to_shape_def, bytes_to_value_def, sizeof_def, llvmTheory.sizeof_def] >>
simp [v_rel_cases] >> rw [word_0_w2i, w2i_1] >>
fs [pointer_size_def, llvmTheory.pointer_size_def] >>
qmatch_goalsub_abbrev_tac `l2n 256 l` >>
qmatch_goalsub_abbrev_tac `n2i n dim` >>
`n < 2 ** dim`
by (
qspecl_then [`l`, `256`] mp_tac numposrepTheory.l2n_lt >>
rw [] >>
`256 ** length l 2 ** dim` suffices_by decide_tac >>
`256 = 2 ** 8` by rw [] >>
full_simp_tac bool_ss [] >>
REWRITE_TAC [GSYM EXP_EXP_MULT] >>
rw [EXP_BASE_LE_MONO] >>
unabbrev_all_tac >> rw []) >>
metis_tac [w2i_n2w, dimword_def, dimindex_8, dimindex_32, dimindex_64])
>- (
Cases_on `t` >>
fs [llvmTheory.type_to_shape_def, llvmTheory.sizeof_def, llvmTheory.first_class_type_def] >>
rw [PAIR_MAP] >>
pairarg_tac >> fs [type_to_shape_def, translate_ty_def, bytes_to_value_def] >>
first_x_assum (qspec_then `t'` mp_tac) >> simp [] >>
simp [v_rel_cases] >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >> rw [])
>- (
Cases_on `t` >>
fs [llvmTheory.type_to_shape_def, llvmTheory.sizeof_def, llvmTheory.first_class_type_def] >>
rw [PAIR_MAP] >>
fs [type_to_shape_def, translate_ty_def, bytes_to_value_def] >>
pairarg_tac >> fs [PAIR_MAP] >>
first_x_assum (qspec_then `l` mp_tac) >> simp [] >>
simp [v_rel_cases] >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [MAP_MAP_o] >> rw [] >> fs [ETA_THM])
>- (
rpt (pairarg_tac >> fs []) >>
first_x_assum (qspec_then `t` mp_tac) >> rw [] >>
first_x_assum (qspec_then `t` mp_tac) >> rw [])
>- (
Cases_on `ts` >> fs [bytes_to_value_def] >>
rpt (pairarg_tac >> fs []) >>
first_x_assum (qspec_then `h` mp_tac) >> simp [] >> strip_tac >>
fs [] >> rfs [] >> fs [] >>
first_x_assum (qspec_then `t` mp_tac) >> simp [] >> strip_tac >>
fs [MAP_MAP_o] >> rw [])
QED
Theorem bytes_v_rel:
∀t bs.
first_class_type t
v_rel (fst (bytes_to_llvm_value t bs))
(fst (bytes_to_llair_value (translate_ty t) bs))
Proof
rw [bytes_to_llvm_value_def, bytes_to_llair_value_def] >>
qspecl_then [`bs`, `t`] mp_tac (CONJUNCT1 (SIMP_RULE (srw_ss()) [] bytes_v_rel_lem)) >>
rw [quotient_pairTheory.PAIR_REL] >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs []
QED
5 years ago
Theorem translate_constant_correct_lem:
(∀c s prog gmap emap s'.
mem_state_rel prog gmap emap s s'
5 years ago
∃v'. eval_exp s' (translate_const gmap c) v' v_rel (eval_const s.globals c) v')
(∀(cs : (ty # const) list) s prog gmap emap s'.
mem_state_rel prog gmap emap s s'
5 years ago
∃v'. list_rel (eval_exp s') (map (translate_const gmap o snd) cs) v' list_rel v_rel (map (eval_const s.globals o snd) cs) v')
(∀(tc : ty # const) s prog gmap emap s'.
mem_state_rel prog gmap emap s s'
5 years ago
∃v'. eval_exp s' (translate_const gmap (snd tc)) v' v_rel (eval_const s.globals (snd tc)) v')
5 years ago
Proof
ho_match_mp_tac const_induction >> rw [translate_const_def] >>
simp [Once eval_exp_cases, eval_const_def]
>- (
Cases_on `s` >> simp [eval_const_def, translate_size_def, v_rel_cases] >>
metis_tac [truncate_2comp_i2w_w2i, dimindex_1, dimindex_8, dimindex_32, dimindex_64])
>- (
simp [v_rel_cases, PULL_EXISTS, MAP_MAP_o] >>
fs [combinTheory.o_DEF, LAMBDA_PROD] >>
5 years ago
metis_tac [])
>- (
simp [v_rel_cases, PULL_EXISTS, MAP_MAP_o] >>
fs [combinTheory.o_DEF, LAMBDA_PROD] >>
5 years ago
metis_tac [])
(* TODO: unimplemented stuff *)
5 years ago
>- cheat
>- (
fs [mem_state_rel_def, fmap_rel_OPTREL_FLOOKUP] >>
CASE_TAC >> fs [] >> first_x_assum (qspec_then `g` mp_tac) >> rw [] >>
rename1 `option_rel _ _ opt` >> Cases_on `opt` >> fs [OPTREL_def] >>
(* TODO: false at the moment, need to work out the llair story on globals *)
cheat)
(* TODO: unimplemented stuff *)
5 years ago
>- cheat
>- cheat
QED
Theorem translate_constant_correct:
∀c s prog gmap emap s' g.
mem_state_rel prog gmap emap s s'
5 years ago
∃v'. eval_exp s' (translate_const gmap c) v' v_rel (eval_const s.globals c) v'
5 years ago
Proof
metis_tac [translate_constant_correct_lem]
QED
(* TODO: This isn't true, since the translation turns LLVM globals into llair
* locals *)
Theorem translate_const_no_reg[simp]:
∀gmap c. r exp_uses (translate_const gmap c)
Proof
ho_match_mp_tac translate_const_ind >>
rw [translate_const_def, exp_uses_def, MEM_MAP, METIS_PROVE [] ``x y (~x y)``]
>- (pairarg_tac >> fs [] >> metis_tac [])
>- (pairarg_tac >> fs [] >> metis_tac [])
>- cheat
>- cheat
QED
Theorem translate_arg_correct:
∀s a v prog gmap emap s'.
mem_state_rel prog gmap emap s s'
eval s a = Some v
arg_to_regs a live prog s.ip
∃v'. eval_exp s' (translate_arg gmap emap a) v' v_rel v.value v'
Proof
Cases_on `a` >> rw [eval_def, translate_arg_def] >> rw []
>- metis_tac [translate_constant_correct] >>
CASE_TAC >> fs [PULL_EXISTS, mem_state_rel_def, local_state_rel_def, emap_invariant_def, arg_to_regs_def] >>
res_tac >> rfs [] >> metis_tac [eval_exp_ignores, record_lemma]
QED
Theorem is_allocated_mem_state_rel:
∀prog gmap emap s1 s1'.
mem_state_rel prog gmap emap s1 s1'
(∀i. is_allocated i s1.heap is_allocated i s1'.heap)
Proof
rw [mem_state_rel_def, is_allocated_def, erase_tags_def] >>
pop_assum mp_tac >> pop_assum (mp_tac o GSYM) >> rw []
QED
5 years ago
Theorem restricted_i2w_11:
∀i (w:'a word). INT_MIN (:'a) i i INT_MAX (:'a) (i2w i : 'a word) = i2w (w2i w) i = w2i w
Proof
rw [i2w_def]
>- (
Cases_on `n2w (Num (-i)) = INT_MINw` >>
rw [w2i_neg, w2i_INT_MINw] >>
fs [word_L_def] >>
`∃j. 0 j i = -j` by intLib.COOPER_TAC >>
5 years ago
rw [] >>
fs [] >>
`INT_MIN (:'a) < dimword (:'a)` by metis_tac [INT_MIN_LT_DIMWORD] >>
`Num j MOD dimword (:'a) = Num j`
by (irule LESS_MOD >> intLib.COOPER_TAC) >>
fs []
>- intLib.COOPER_TAC
>- (
`Num j < INT_MIN (:'a)` by intLib.COOPER_TAC >>
fs [w2i_n2w_pos, integerTheory.INT_OF_NUM]))
>- (
fs [GSYM INT_MAX, INT_MAX_def] >>
`Num i < INT_MIN (:'a)` by intLib.COOPER_TAC >>
rw [w2i_n2w_pos, integerTheory.INT_OF_NUM] >>
intLib.COOPER_TAC)
QED
Theorem translate_sub_correct:
∀prog gmap emap s1 s1' nsw nuw ty v1 v1' v2 v2' e2' e1' result.
do_sub nuw nsw v1 v2 ty = Some result
eval_exp s1' e1' v1'
v_rel v1.value v1'
eval_exp s1' e2' v2'
v_rel v2.value v2'
∃v3'.
eval_exp s1' (Sub (translate_ty ty) e1' e2') v3'
v_rel result.value v3'
Proof
rw [] >>
simp [Once eval_exp_cases] >>
fs [do_sub_def] >> rw [] >>
rfs [v_rel_cases] >> rw [] >> fs [] >>
BasicProvers.EVERY_CASE_TAC >> fs [PULL_EXISTS, translate_ty_def, translate_size_def] >>
pairarg_tac >> fs [] >>
fs [PAIR_MAP, wordsTheory.FST_ADD_WITH_CARRY] >>
rw [] >>
qmatch_goalsub_abbrev_tac `w2i (-1w * w1 + w2)` >>
qexists_tac `w2i w2` >> qexists_tac `w2i w1` >> simp [] >>
unabbrev_all_tac >> rw []
>- (
irule restricted_i2w_11 >> simp [word_sub_i2w] >>
`dimindex (:1) = 1` by rw [] >>
drule truncate_2comp_i2w_w2i >>
rw [word_sub_i2w] >>
metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:1)``,
SIMP_CONV (srw_ss()) [] ``INT_MAX (:1)``])
>- (
irule restricted_i2w_11 >> simp [word_sub_i2w] >>
`dimindex (:8) = 8` by rw [] >>
drule truncate_2comp_i2w_w2i >>
rw [word_sub_i2w] >>
metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:8)``,
SIMP_CONV (srw_ss()) [] ``INT_MAX (:8)``])
>- (
irule restricted_i2w_11 >> simp [word_sub_i2w] >>
`dimindex (:32) = 32` by rw [] >>
drule truncate_2comp_i2w_w2i >>
rw [word_sub_i2w] >>
metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:32)``,
SIMP_CONV (srw_ss()) [] ``INT_MAX (:32)``])
>- (
irule restricted_i2w_11 >> simp [word_sub_i2w] >>
`dimindex (:64) = 64` by rw [] >>
drule truncate_2comp_i2w_w2i >>
rw [word_sub_i2w] >>
metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:64)``,
SIMP_CONV (srw_ss()) [] ``INT_MAX (:64)``])
QED
5 years ago
Theorem translate_extract_correct:
∀prog gmap emap s1 s1' a v v1' e1' cs ns result.
mem_state_rel prog gmap emap s1 s1'
5 years ago
map (λci. signed_v_to_num (eval_const s1.globals ci)) cs = map Some ns
extract_value v ns = Some result
eval_exp s1' e1' v1'
v_rel v v1'
∃v2'.
eval_exp s1' (foldl (λe c. Select e (translate_const gmap c)) e1' cs) v2'
5 years ago
v_rel result v2'
Proof
Induct_on `cs` >> rw [] >> fs [extract_value_def]
>- metis_tac [] >>
first_x_assum irule >>
Cases_on `ns` >> fs [] >>
qmatch_goalsub_rename_tac `translate_const gmap c` >>
`∃v2'. eval_exp s1' (translate_const gmap c) v2' v_rel (eval_const s1.globals c) v2'`
5 years ago
by metis_tac [translate_constant_correct] >>
Cases_on `v` >> fs [extract_value_def] >>
qpat_x_assum `v_rel (AggV _) _` mp_tac >>
simp [Once v_rel_cases] >> rw [] >>
simp [Once eval_exp_cases, PULL_EXISTS] >>
fs [LIST_REL_EL_EQN] >>
qmatch_assum_rename_tac `_ = map Some is` >>
Cases_on `eval_const s1.globals c` >> fs [signed_v_to_num_def, signed_v_to_int_def] >> rw [] >>
`∃i. v2' = FlatV i` by fs [v_rel_cases] >> fs [] >>
5 years ago
qmatch_assum_rename_tac `option_join _ = Some x` >>
`∃size. i = IntV (&x) size` suffices_by metis_tac [] >> rw [] >>
5 years ago
qpat_x_assum `v_rel _ _` mp_tac >>
simp [v_rel_cases] >> rw [] >> fs [signed_v_to_int_def] >> rw [] >>
intLib.COOPER_TAC
QED
Theorem translate_update_correct:
∀prog gmap emap s1 s1' a v1 v1' v2 v2' e2 e2' e1' cs ns result.
mem_state_rel prog gmap emap s1 s1'
5 years ago
map (λci. signed_v_to_num (eval_const s1.globals ci)) cs = map Some ns
insert_value v1 v2 ns = Some result
eval_exp s1' e1' v1'
v_rel v1 v1'
eval_exp s1' e2' v2'
v_rel v2 v2'
∃v3'.
eval_exp s1' (translate_updatevalue gmap e1' e2' cs) v3'
5 years ago
v_rel result v3'
Proof
Induct_on `cs` >> rw [] >> fs [insert_value_def, translate_updatevalue_def]
>- metis_tac [] >>
simp [Once eval_exp_cases, PULL_EXISTS] >>
Cases_on `ns` >> fs [] >>
Cases_on `v1` >> fs [insert_value_def] >>
rename [`insert_value (el x _) _ ns`] >>
Cases_on `insert_value (el x l) v2 ns` >> fs [] >> rw [] >>
qpat_x_assum `v_rel (AggV _) _` mp_tac >> simp [Once v_rel_cases] >> rw [] >>
simp [v_rel_cases] >>
qmatch_goalsub_rename_tac `translate_const gmap c` >>
5 years ago
qexists_tac `vs2` >> simp [] >>
`∃v4'. eval_exp s1' (translate_const gmap c) v4' v_rel (eval_const s1.globals c) v4'`
5 years ago
by metis_tac [translate_constant_correct] >>
`∃idx_size. v4' = FlatV (IntV (&x) idx_size)`
5 years ago
by (
pop_assum mp_tac >> simp [Once v_rel_cases] >>
rw [] >> fs [signed_v_to_num_def, signed_v_to_int_def] >>
intLib.COOPER_TAC) >>
first_x_assum drule >>
disch_then drule >>
disch_then drule >>
disch_then (qspecl_then [`el x vs2`, `v2'`, `e2'`, `Select e1' (translate_const gmap c)`] mp_tac) >>
5 years ago
simp [Once eval_exp_cases] >>
metis_tac [EVERY2_LUPDATE_same, LIST_REL_LENGTH, LIST_REL_EL_EQN]
QED
val sizes = [``:1``, ``:8``, ``:32``, ``:64``];
val trunc_thms =
LIST_CONJ (map (fn x => SIMP_RULE (srw_ss()) [] (INST_TYPE [``:'a`` |-> x] truncate_2comp_i2w_w2i))
sizes);
val signed2unsigned_thms =
LIST_CONJ (map (fn x => SIMP_RULE (srw_ss()) [] (INST_TYPE [``:'a`` |-> x] (GSYM w2n_signed2unsigned)))
sizes);
Definition good_cast_def:
(good_cast Trunc (FlatV (IntV i size)) from_bits to_t
from_bits = size llair$sizeof_bits to_t < from_bits)
(good_cast Zext (FlatV (IntV i size)) from_bits to_t
from_bits = size from_bits < sizeof_bits to_t)
(good_cast Sext (FlatV (IntV i size)) from_bits to_t
from_bits = size from_bits < sizeof_bits to_t)
(good_cast Ptrtoint _ _ _ T)
(good_cast Inttoptr _ _ _ T)
End
Theorem translate_cast_correct:
∀prog gmap emap s1' cop from_bits to_ty v1 v1' e1' result.
do_cast cop v1.value to_ty = Some result
eval_exp s1' e1' v1'
v_rel v1.value v1'
good_cast cop v1' from_bits (translate_ty to_ty)
∃v3'.
eval_exp s1' ((if (cop = Zext) then Unsigned else Signed)
(if cop = Trunc then sizeof_bits (translate_ty to_ty) else from_bits)
e1' (translate_ty to_ty)) v3'
v_rel result v3'
Proof
rw [] >> simp [Once eval_exp_cases, PULL_EXISTS, Once v_rel_cases]
>- ( (* Zext *)
fs [do_cast_def, OPTION_JOIN_EQ_SOME, unsigned_v_to_num_some, w64_cast_some,
translate_ty_def, sizeof_bits_def, translate_size_def] >>
rw [] >>
rfs [v_rel_cases] >> rw [] >>
qmatch_assum_abbrev_tac `eval_exp _ _ (FlatV (IntV i s))` >>
qexists_tac `i` >> qexists_tac `s` >> rw [] >>
unabbrev_all_tac >>
fs [good_cast_def, translate_ty_def, sizeof_bits_def, translate_size_def] >>
rw [trunc_thms, signed2unsigned_thms] >>
rw [GSYM w2w_def, w2w_w2w, WORD_ALL_BITS] >>
rw [w2i_w2w_expand])
>- ( (* Trunc *)
fs [do_cast_def] >> rw [] >>
fs [OPTION_JOIN_EQ_SOME, w64_cast_some, unsigned_v_to_num_some,
signed_v_to_int_some, mk_ptr_some] >>
rw [sizeof_bits_def, translate_ty_def, translate_size_def] >>
rfs [] >> fs [v_rel_cases] >>
rw [] >>
qmatch_assum_abbrev_tac `eval_exp _ _ (FlatV (IntV i s))` >>
qexists_tac `s` >> qexists_tac `i` >> rw [] >>
unabbrev_all_tac >>
fs [good_cast_def, translate_ty_def, sizeof_bits_def, translate_size_def] >>
rw [w2w_n2w, GSYM w2w_def, trunc_thms, pointer_size_def] >>
rw [i2w_w2i_extend, WORD_w2w_OVER_MUL] >>
rw [w2w_w2w, WORD_ALL_BITS, word_bits_w2w] >>
rw [word_mul_def]) >>
Cases_on `cop` >> fs [] >> rw []
>- ( (* Sext *)
fs [do_cast_def] >> rw [] >>
fs [OPTION_JOIN_EQ_SOME, w64_cast_some, unsigned_v_to_num_some,
signed_v_to_int_some, mk_ptr_some] >>
rw [sizeof_bits_def, translate_ty_def, translate_size_def] >>
rfs [] >> fs [v_rel_cases] >>
rw [] >>
qmatch_assum_abbrev_tac `eval_exp _ _ (FlatV (IntV i s))` >>
qexists_tac `s` >> qexists_tac `i` >> rw [] >>
unabbrev_all_tac >>
fs [good_cast_def, translate_ty_def, sizeof_bits_def, translate_size_def] >>
rw [trunc_thms, w2w_i2w] >>
irule (GSYM w2i_i2w)
>- (
`w2i w INT_MAX (:1) INT_MIN (:1) w2i w` by metis_tac [w2i_le, w2i_ge] >>
fs [] >> intLib.COOPER_TAC)
>- (
`w2i w INT_MAX (:1) INT_MIN (:1) w2i w` by metis_tac [w2i_le, w2i_ge] >>
fs [] >> intLib.COOPER_TAC)
>- (
`w2i w INT_MAX (:1) INT_MIN (:1) w2i w` by metis_tac [w2i_le, w2i_ge] >>
fs [] >> intLib.COOPER_TAC)
>- (
`w2i w INT_MAX (:8) INT_MIN (:8) w2i w` by metis_tac [w2i_le, w2i_ge] >>
fs [] >> intLib.COOPER_TAC)
>- (
`w2i w INT_MAX (:8) INT_MIN (:8) w2i w` by metis_tac [w2i_le, w2i_ge] >>
fs [] >> intLib.COOPER_TAC)
>- (
`w2i w INT_MAX (:32) INT_MIN (:32) w2i w` by metis_tac [w2i_le, w2i_ge] >>
fs [] >> intLib.COOPER_TAC))
(* TODO: pointer to int and int to pointer casts *)
>> cheat
QED
Theorem prog_ok_nonterm:
∀prog i ip.
prog_ok prog get_instr prog ip (Inl i) ¬terminator i inc_pc ip next_ips prog ip
Proof
rw [next_ips_cases, IN_DEF, get_instr_cases, PULL_EXISTS] >>
`terminator (last b.body) b.body []` by metis_tac [prog_ok_def] >>
Cases_on `length b.body = idx + 1`
>- (
drule LAST_EL >>
rw [] >> fs [DECIDE ``PRE (x + 1) = x``]) >>
Cases_on `el idx b.body` >>
fs [instr_next_ips_def, terminator_def] >>
rw [EXISTS_OR_THM, inc_pc_def, inc_bip_def]
QED
Theorem const_idx_uses[simp]:
∀cs gmap e.
exp_uses (foldl (λe c. Select e (translate_const gmap c)) e cs) = exp_uses e
Proof
Induct_on `cs` >> rw [exp_uses_def] >>
rw [translate_const_no_reg, EXTENSION]
QED
Theorem exp_uses_trans_upd_val[simp]:
∀cs gmap e1 e2. exp_uses (translate_updatevalue gmap e1 e2 cs) =
(if cs = [] then {} else exp_uses e1) exp_uses e2
Proof
Induct_on `cs` >> rw [exp_uses_def, translate_updatevalue_def] >>
rw [translate_const_no_reg, EXTENSION] >>
metis_tac []
QED
(* TODO: identify some lemmas to cut down on the duplicated proof in the very
* similar cases *)
5 years ago
Theorem translate_instr_to_exp_correct:
∀gmap emap instr r t s1 s1' s2 prog l regs_to_keep.
is_ssa prog prog_ok prog
5 years ago
classify_instr instr = Exp r t
mem_state_rel prog gmap emap s1 s1'
get_instr prog s1.ip (Inl instr)
step_instr prog s1 instr l s2
∃pv emap' s2'.
l = Tau
s2.ip = inc_pc s1.ip
mem_state_rel prog gmap emap' s2 s2'
(r regs_to_keep s1' = s2' emap' = emap |+ (r, translate_instr_to_exp gmap emap instr))
(r regs_to_keep
emap' = emap |+ (r,Var (translate_reg r t))
step_inst s1' (Move [(translate_reg r t, translate_instr_to_exp gmap emap instr)]) Tau s2')
5 years ago
Proof
recInduct translate_instr_to_exp_ind >>
simp [translate_instr_to_exp_def, classify_instr_def] >>
conj_tac
>- ( (* Sub *)
rw [step_instr_cases, get_instr_cases, update_result_def] >>
qpat_x_assum `Sub _ _ _ _ _ _ = el _ _` (assume_tac o GSYM) >>
`bigunion (image arg_to_regs {a1; a2}) live prog s1.ip`
by (
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def] >>
metis_tac []) >>
fs [] >>
5 years ago
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >>
5 years ago
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> rw [] >>
drule translate_sub_correct >>
simp [] >>
disch_then (qspecl_then [`s1'`, `v'`, `v''`] mp_tac) >> simp [] >>
disch_then drule >> disch_then drule >> rw [] >>
rename1 `eval_exp _ (Sub _ _ _) res_v` >>
rename1 `r _` >>
simp [inc_pc_def, llvmTheory.inc_pc_def] >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw []
5 years ago
>- (
simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >>
rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
irule mem_state_rel_update_keep >> rw [])
5 years ago
>- (
irule mem_state_rel_update >> rw []
>- (
fs [exp_uses_def]
>| [Cases_on `a1`, Cases_on `a2`] >>
fs [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
metis_tac [])) >>
5 years ago
conj_tac
>- ( (* Extractvalue *)
rw [step_instr_cases, get_instr_cases, update_result_def] >>
qpat_x_assum `Extractvalue _ _ _ = el _ _` (assume_tac o GSYM) >>
`arg_to_regs a live prog s1.ip`
by (
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def]) >>
drule translate_extract_correct >> rpt (disch_then drule) >>
drule translate_arg_correct >> disch_then drule >>
simp [] >> strip_tac >>
disch_then drule >> simp [] >> rw [] >>
rename1 `eval_exp _ (foldl _ _ _) res_v` >>
rw [inc_pc_def, llvmTheory.inc_pc_def] >>
rename1 `r _` >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw []
>- (
simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >>
rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
irule mem_state_rel_update_keep >> rw [])
>- (
irule mem_state_rel_update >> rw []
>- (
Cases_on `a` >>
fs [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
metis_tac [])) >>
5 years ago
conj_tac
>- ( (* Updatevalue *)
rw [step_instr_cases, get_instr_cases, update_result_def] >>
qpat_x_assum `Insertvalue _ _ _ _ = el _ _` (assume_tac o GSYM) >>
`arg_to_regs a1 live prog s1.ip
arg_to_regs a2 live prog s1.ip`
by (
ONCE_REWRITE_TAC [live_gen_kill] >>
simp [SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def]) >>
drule translate_update_correct >> rpt (disch_then drule) >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >>
simp [] >> strip_tac >> strip_tac >>
disch_then (qspecl_then [`v'`, `v''`] mp_tac) >> simp [] >>
disch_then drule >> disch_then drule >>
rw [] >>
rename1 `eval_exp _ (translate_updatevalue _ _ _ _) res_v` >>
rw [inc_pc_def, llvmTheory.inc_pc_def] >>
rename1 `r _` >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw []
>- (
simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >>
rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
irule mem_state_rel_update_keep >> rw [])
>- (
irule mem_state_rel_update >> strip_tac
>- (
Cases_on `a1` >> Cases_on `a2` >>
rw [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
rw [] >> metis_tac [] ))>>
conj_tac
>- ( (* Cast *)
simp [step_instr_cases, get_instr_cases, update_result_def] >>
rpt strip_tac >>
qpat_x_assum `Cast _ _ _ _ = el _ _` (assume_tac o GSYM) >>
`arg_to_regs a1 live prog s1.ip`
by (
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def] >>
metis_tac []) >>
fs [] >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> strip_tac >>
drule translate_cast_correct >> ntac 2 (disch_then drule) >>
simp [] >>
disch_then (qspec_then `sizeof_bits (translate_ty t1)` mp_tac) >>
impl_tac
(* TODO: prog_ok should enforce that the type is consistent *)
>- cheat >>
strip_tac >>
rename1 `eval_exp _ _ res_v` >>
simp [inc_pc_def, llvmTheory.inc_pc_def] >>
rename1 `r _` >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> simp []
>- (
simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >>
fs [] >>
rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
irule mem_state_rel_update_keep >> rw [])
>- (
irule mem_state_rel_update >> simp [] >> strip_tac
>- (
rw [] >>
fs [exp_uses_def] >> Cases_on `a1` >> fs [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
metis_tac [])) >>
(* TODO: unimplemented instruction translations *)
cheat
QED
Triviality eval_exp_help:
(s1 with heap := h).locals = s1.locals
Proof
rw []
QED
Theorem translate_instr_to_inst_correct:
∀gmap emap instr r t s1 s1' s2 prog l.
classify_instr instr = Non_exp
prog_ok prog is_ssa prog
mem_state_rel prog gmap emap s1 s1'
get_instr prog s1.ip (Inl instr)
step_instr prog s1 instr l s2
∃pv s2'.
s2.ip = inc_pc s1.ip
mem_state_rel prog gmap (extend_emap_non_exp emap instr) s2 s2'
step_inst s1' (translate_instr_to_inst gmap emap instr) (translate_trace gmap l) s2'
Proof
rw [step_instr_cases] >>
fs [classify_instr_def, translate_instr_to_inst_def]
>- ( (* Load *)
fs [step_inst_cases, get_instr_cases, PULL_EXISTS] >>
qpat_x_assum `Load _ _ _ = el _ _` (assume_tac o GSYM) >>
`arg_to_regs a1 live prog s1.ip`
by (
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def] >>
metis_tac []) >>
fs [] >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> rw [] >>
qpat_x_assum `v_rel (FlatV _) _` mp_tac >> simp [Once v_rel_cases] >> rw [] >>
`∃n. r = Reg n` by (Cases_on `r` >> metis_tac []) >>
qexists_tac `n` >> qexists_tac `translate_ty t` >>
HINT_EXISTS_TAC >> rw [] >>
qexists_tac `freeable` >> rw [translate_trace_def]
>- rw [inc_pc_def, llvmTheory.inc_pc_def, update_result_def]
>- (
simp [GSYM translate_reg_def, llvmTheory.inc_pc_def, update_result_def,
update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST,
extend_emap_non_exp_def] >>
irule mem_state_rel_update_keep >>
rw []
>- rw [assigns_cases, IN_DEF, EXTENSION, get_instr_cases, instr_assigns_def]
>- (
`s1.ip with i := inc_bip (Offset idx) = inc_pc s1.ip` by rw [inc_pc_def] >>
simp [] >> irule prog_ok_nonterm >>
simp [get_instr_cases, terminator_def])
>- metis_tac [next_ips_reachable, mem_state_rel_def]
>- (
fs [w2n_i2n, pointer_size_def, mem_state_rel_def] >>
metis_tac [bytes_v_rel, get_bytes_erase_tags]))
>- rw [translate_reg_def]
>- (
fs [w2n_i2n, pointer_size_def, mem_state_rel_def] >>
metis_tac [is_allocated_erase_tags]))
>- ( (* Store *)
fs [step_inst_cases, get_instr_cases, PULL_EXISTS] >>
qpat_x_assum `Store _ _ = el _ _` (assume_tac o GSYM) >>
`bigunion (image arg_to_regs {a1; a2}) live prog s1.ip`
by (
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def] >>
metis_tac []) >>
fs [] >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> rw [] >>
qpat_x_assum `v_rel (FlatV _) _` mp_tac >> simp [Once v_rel_cases] >> rw [] >>
drule v_rel_bytes >> rw [] >>
fs [w2n_i2n, pointer_size_def] >>
HINT_EXISTS_TAC >> rw [] >>
qexists_tac `freeable` >> rw [] >>
qexists_tac `v'` >> rw []
>- rw [llvmTheory.inc_pc_def, inc_pc_def]
>- (
simp [llvmTheory.inc_pc_def] >>
irule mem_state_rel_no_update >> rw []
>- rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def]
>- (
`s1.ip with i := inc_bip (Offset idx) = inc_pc s1.ip` by rw [inc_pc_def] >>
simp [] >> irule prog_ok_nonterm >>
simp [get_instr_cases, terminator_def]) >>
irule mem_state_rel_heap_update >>
rw [set_bytes_unchanged, erase_tags_set_bytes] >>
fs [mem_state_rel_def, extend_emap_non_exp_def] >>
metis_tac [set_bytes_heap_ok])
>- (
fs [mem_state_rel_def] >>
fs [is_allocated_def, heap_component_equality, erase_tags_def] >>
metis_tac [])
>- (
(* TODO: mem_state_rel needs to relate the globals *)
fs [get_obs_cases, llvmTheory.get_obs_cases] >> rw [translate_trace_def] >>
fs [mem_state_rel_def, fmap_rel_OPTREL_FLOOKUP]
>- (
first_x_assum (qspec_then `x` mp_tac) >> rw [] >>
rename1 `option_rel _ _ opt` >> Cases_on `opt` >>
fs [OPTREL_def] >>
cheat) >>
cheat))
QED
Theorem classify_instr_term_call:
∀i. (classify_instr i = Term terminator i)
(classify_instr i = Call is_call i)
Proof
Cases >> rw [classify_instr_def, is_call_def, terminator_def] >>
Cases_on `p` >> rw [classify_instr_def]
QED
Definition untranslate_glob_var_def:
untranslate_glob_var (Var_name n ty) = Glob_var n
End
Definition untranslate_trace_def:
(untranslate_trace Tau = Tau)
(untranslate_trace Error = Error)
(untranslate_trace (Exit i) = (Exit i))
(untranslate_trace (W gv bytes) = W (untranslate_glob_var gv) bytes)
End
Theorem un_translate_glob_inv:
∀x t. untranslate_glob_var (translate_glob_var gmap x) = x
Proof
Cases_on `x` >> rw [translate_glob_var_def] >>
CASE_TAC >> rw [untranslate_glob_var_def]
QED
Theorem un_translate_trace_inv:
∀x. untranslate_trace (translate_trace gmap x) = x
Proof
Cases >> rw [translate_trace_def, untranslate_trace_def] >>
metis_tac [un_translate_glob_inv]
QED
Theorem take_to_call_lem:
∀i idx body.
idx < length body el idx body = i ¬terminator i ¬is_call i
take_to_call (drop idx body) = i :: take_to_call (drop (idx + 1) body)
Proof
Induct_on `idx` >> rw []
>- (Cases_on `body` >> fs [take_to_call_def] >> rw []) >>
Cases_on `body` >> fs [] >>
simp [ADD1]
QED
Theorem inc_translate_label:
∀f l x. inc_label (translate_label f l x) = translate_label f l (x + 1)
Proof
rw [] >> Cases_on `l` >> rw [translate_label_def, inc_label_def] >>
Cases_on `x'` >> rw [translate_label_def, inc_label_def]
QED
Theorem translate_instrs_correct1:
∀prog s1 tr s2.
multi_step prog s1 tr s2
∀s1' regs_to_keep b' gmap emap d b idx rest l.
prog_ok prog is_ssa prog
mem_state_rel prog gmap emap s1 s1'
alookup prog s1.ip.f = Some d
alookup d.blocks s1.ip.b = Some b
s1.ip.i = Offset idx
(l,b')::rest =
fst (translate_instrs (translate_label (dest_fn s1.ip.f) s1.ip.b (num_calls (take idx b.body)))
gmap emap regs_to_keep (take_to_call (drop idx b.body)))
∃emap s2' tr'.
step_block (translate_prog prog) s1' b'.cmnd b'.term tr' s2'
filter ($ Tau) tr' = filter ($ Tau) (map (translate_trace gmap) tr)
state_rel prog gmap emap s2 s2'
Proof
ho_match_mp_tac multi_step_ind >> rw_tac std_ss []
>- (
fs [last_step_cases]
>- ( (* Phi (not handled here) *)
fs [get_instr_cases])
>- ( (* Terminator *)
`(∃code. l = Exit code) l = Tau `
by (
fs [llvmTheory.step_cases] >>
`i' = i''` by metis_tac [get_instr_func, INL_11] >>
fs [step_instr_cases] >> rfs [terminator_def]) >>
fs [get_instr_cases, translate_trace_def] >> rw [] >>
`el idx b.body = el 0 (drop idx b.body)` by rw [EL_DROP] >>
fs [] >>
Cases_on `drop idx b.body` >> fs [DROP_NIL] >> rw []
>- ( (* Exit *)
fs [llvmTheory.step_cases, get_instr_cases, step_instr_cases,
translate_instrs_def, take_to_call_def, classify_instr_def,
translate_instr_to_term_def, translate_instr_to_inst_def,
llvmTheory.get_obs_cases] >>
simp [Once step_block_cases, step_term_cases, PULL_EXISTS, step_inst_cases] >>
drule translate_arg_correct >>
disch_then drule >> impl_tac
>- (
`get_instr prog s1.ip (Inl (Exit a))` by rw [get_instr_cases] >>
drule get_instr_live >>
simp [uses_cases, SUBSET_DEF, IN_DEF, PULL_EXISTS] >>
rw [] >> first_x_assum irule >>
disj1_tac >>
metis_tac [instr_uses_def]) >>
rw [] >>
qexists_tac `emap` >>
qexists_tac `s1' with status := Complete code` >>
qexists_tac `[Exit code]` >>
rw []
>- (
rfs [translate_instrs_def, classify_instr_def] >>
rw [translate_instr_to_term_def] >>
fs [v_rel_cases] >> fs [signed_v_to_int_def] >> metis_tac []) >>
rw [state_rel_def] >>
metis_tac [mem_state_rel_exited]) >>
fs [take_to_call_def] >>
rfs [] >>
fs [translate_instrs_def] >>
Cases_on `el idx b.body` >> fs [terminator_def, classify_instr_def, translate_trace_def] >> rw []
>- ( (* Ret *)
cheat)
>- ( (* Br *)
simp [translate_instr_to_term_def, Once step_block_cases] >>
simp [step_term_cases, PULL_EXISTS, RIGHT_AND_OVER_OR, EXISTS_OR_THM] >>
pairarg_tac >> rw [] >>
fs [llvmTheory.step_cases] >>
drule get_instr_live >> disch_tac >>
drule translate_arg_correct >>
fs [step_instr_cases] >> fs [] >>
TRY (fs [get_instr_cases] >> NO_TAC) >>
`a = a'` by fs [get_instr_cases] >>
disch_then drule >>
impl_tac
>- (
fs [SUBSET_DEF, IN_DEF] >> rfs [uses_cases, get_instr_cases, instr_uses_def] >>
fs [IN_DEF]) >>
disch_tac >> fs [] >>
fs [v_rel_cases, GSYM PULL_EXISTS] >>
qexists_tac `emap` >> qexists_tac `w2i tf` >> simp [] >> conj_tac
>- metis_tac [] >>
rename1 `el _ _ = Br e lab1 lab2` >>
qpat_abbrev_tac `target = if tf = 0w then l2 else l1` >>
`last b.body = Br e l1 l2
<|f := s1.ip.f; b := Some target; i := Phi_ip s1.ip.b|> next_ips prog s1.ip`
by (
fs [prog_ok_def, get_instr_cases] >>
last_x_assum drule >> disch_then drule >>
strip_tac >> conj_asm1_tac
>- (
CCONTR_TAC >>
`Br a l1 l2 set (front (b.body))`
by (
`mem (Br a l1 l2) (front b.body ++ [last b.body])`
by metis_tac [EL_MEM, APPEND_FRONT_LAST] >>
fs [] >> metis_tac []) >>
fs [EVERY_MEM] >> first_x_assum drule >> rw [terminator_def])
>- (
rw [next_ips_cases, IN_DEF, assigns_cases] >>
disj1_tac >>
qexists_tac `Br a l1 l2` >>
rw [instr_next_ips_def, Abbr `target`] >>
fs [get_instr_cases, instr_to_labs_def] >>
metis_tac [blockHeader_nchotomy])) >>
qmatch_goalsub_abbrev_tac `state_rel _ _ _ _ (_ with bp := target')` >>
rw [state_rel_def]
>- (
fs [get_instr_cases] >>
`every (λlab. ∃b phis landing. alookup d.blocks (Some lab) = Some b b.h = Head phis landing)
(instr_to_labs (last b.body))`
by (fs [prog_ok_def, EVERY_MEM] >> metis_tac []) >>
rfs [instr_to_labs_def] >>
rw [Once pc_rel_cases, get_instr_cases, get_block_cases, PULL_EXISTS] >>
fs [GSYM PULL_EXISTS, Abbr `target`] >>
rw [MEM_MAP, instr_to_labs_def] >>
`s1.ip.b = option_map Lab l' dest_fn s1.ip.f = f`
by (
Cases_on `s1.ip.b` >>
fs [translate_label_def] >>
Cases_on `x` >>
fs [translate_label_def]) >>
rw [OPTION_MAP_COMPOSE, combinTheory.o_DEF, dest_label_def, Abbr
`target'`, word_0_w2i, METIS_PROVE [w2i_eq_0] ``∀w. 0 = w2i w w = 0w``] >>
Cases_on `l'` >> rw [])
>- (
fs [mem_state_rel_def, local_state_rel_def, emap_invariant_def] >> rw []
>- (
qpat_x_assum `∀r. r live _ _ P r` mp_tac >>
simp [Once live_gen_kill] >> disch_then (qspec_then `r` mp_tac) >>
impl_tac >> rw [] >>
rw [PULL_EXISTS] >>
disj1_tac >>
qexists_tac `<|f := s1.ip.f; b := Some target; i := Phi_ip s1.ip.b|>` >>
rw [] >>
rw [IN_DEF, assigns_cases] >>
CCONTR_TAC >> fs [] >>
imp_res_tac get_instr_func >> fs [] >> rw [] >>
fs [instr_assigns_def])
>- (
fs [reachable_def] >>
qexists_tac `path ++ [<|f := s1.ip.f; b := Some target; i := Phi_ip s1.ip.b|>]` >>
rw_tac std_ss [good_path_append, GSYM APPEND] >> rw [] >>
rw [Once good_path_cases] >> fs [next_ips_cases, IN_DEF] >> metis_tac [])))
>- ( (* Invoke *)
cheat)
>- ( (* Unreachable *)
cheat)
>- ( (* Exit *)
fs [llvmTheory.step_cases, get_instr_cases, step_instr_cases])
>- ( (* Throw *)
cheat))
>- ( (* Call *)
cheat)
>- ( (* Stuck *)
rw [translate_trace_def] >>
(* TODO: need to know that stuck LLVM instructions translate to stuck
* llair instructions. This will follow from knowing that when a llair
* instruction takes a step, the LLVM source can take the same step, ie,
* the backward direction of the proof. *)
cheat))
>- ( (* Middle of the block *)
fs [llvmTheory.step_cases] >> TRY (fs [get_instr_cases] >> NO_TAC) >>
`i' = i` by metis_tac [get_instr_func, INL_11] >> fs [] >>
rename [`step_instr _ _ _ _ s2`, `state_rel _ _ _ s3 _`,
`mem_state_rel _ _ _ s1 s1'`] >>
Cases_on `∃r t. classify_instr i = Exp r t` >> fs []
>- ( (* instructions that compile to expressions *)
drule translate_instr_to_exp_correct >>
ntac 5 (disch_then drule) >>
disch_then (qspec_then `regs_to_keep` mp_tac) >>
rw [] >> fs [translate_trace_def] >>
`reachable prog (inc_pc s1.ip)`
by metis_tac [prog_ok_nonterm, next_ips_reachable, mem_state_rel_def] >>
first_x_assum drule >>
simp [inc_pc_def, inc_bip_def] >>
`take_to_call (drop idx b.body) = i :: take_to_call (drop (idx + 1) b.body)`
by (
irule take_to_call_lem >> simp [] >>
fs [get_instr_cases]) >>
`num_calls (take (idx + 1) b.body) = num_calls (take idx b.body)`
by (fs [get_instr_cases] >> rw [num_calls_def, TAKE_EL_SNOC, FILTER_SNOC]) >>
fs [translate_instrs_def, inc_translate_label] >>
Cases_on `r regs_to_keep` >> fs [] >> rw []
>- metis_tac [] >>
pairarg_tac >> fs [] >> rw [] >>
rename1 `translate_instrs _ _ _ _ _ = (bs, emap1)` >>
first_x_assum (qspecl_then [`regs_to_keep`] mp_tac) >> rw [] >>
Cases_on `bs` >> fs [add_to_first_block_def] >>
rename1 `translate_instrs _ _ _ _ _ = (b1::bs, _)` >>
Cases_on `b1` >> fs [add_to_first_block_def] >> rw [] >>
rename1 `state_rel prog gmap emap3 s3 s3'` >>
qexists_tac `emap3` >> qexists_tac `s3'` >> rw [] >>
qexists_tac `Tau::tr'` >> rw [] >>
simp [Once step_block_cases] >>
metis_tac [])
>- ( (* Non-expression instructions *)
Cases_on `classify_instr i` >> fs [classify_instr_term_call] >>
drule translate_instr_to_inst_correct >>
ntac 5 (disch_then drule) >>
strip_tac >> fs [] >>
first_x_assum drule >> simp [inc_pc_def, inc_bip_def] >>
disch_then (qspecl_then [`regs_to_keep`] mp_tac) >> simp [] >>
strip_tac >>
`take_to_call (drop idx b.body) = i :: take_to_call (drop (idx + 1) b.body)`
by (
irule take_to_call_lem >> simp [] >>
fs [get_instr_cases]) >>
`num_calls (take (idx + 1) b.body) = num_calls (take idx b.body)`
by (fs [get_instr_cases] >> rw [num_calls_def, TAKE_EL_SNOC, FILTER_SNOC]) >>
fs [translate_instrs_def, inc_translate_label] >>
pairarg_tac >> fs [] >>
rename1 `translate_instrs _ _ _ _ _ = (bs, emap1)` >>
Cases_on `bs` >> fs [add_to_first_block_def] >>
rename1 `translate_instrs _ _ _ _ _ = (b1::bs, _)` >>
Cases_on `b1` >> fs [add_to_first_block_def] >> fs [] >>
rename1 `state_rel prog gmap emap3 s3 s3'` >>
qexists_tac `emap3` >> qexists_tac `s3'` >> simp [] >>
qexists_tac `translate_trace gmap l::tr'` >> rw [] >>
simp [Once step_block_cases] >>
disj2_tac >>
qexists_tac `s2'` >> rw []))
QED
Theorem do_phi_vals:
∀prog gmap emap from_l s s' phis updates.
mem_state_rel prog gmap emap s s'
map (do_phi from_l s) phis = map Some updates
BIGUNION (set (map (phi_uses from_l) phis)) live prog s.ip
∃es vs.
list_rel v_rel (map (λx. (snd x).value) updates) vs
list_rel (eval_exp s') es vs
map fst updates = map phi_assigns phis
map (λx. case x of Phi r t largs =>
case option_map (λarg. translate_arg gmap emap arg) (alookup largs from_l) of
None => (translate_reg r t,Nondet)
| Some e => (translate_reg r t,e))
phis
= map2 (\p. λe. case p of Phi r t largs => (translate_reg r t, e)) phis es
Proof
Induct_on `phis` >> rw [] >> Cases_on `updates` >> fs [] >>
first_x_assum drule >> disch_then drule >> rw [] >>
Cases_on `h` >> fs [do_phi_def, OPTION_JOIN_EQ_SOME] >>
drule translate_arg_correct >>
disch_then drule >>
impl_tac
>- (fs [phi_uses_def] >> rfs []) >>
rw [PULL_EXISTS, phi_assigns_def] >> metis_tac []
QED
Triviality case_phi_lift:
∀f g. f (case x of Phi x y z => g x y z) = case x of Phi x y z => f (g x y z)
Proof
Cases_on `x` >> rw []
QED
Triviality id2:
(λ(v,r). (v,r)) = I
Proof
rw [FUN_EQ_THM] >> Cases_on `x` >> rw []
QED
Theorem build_phi_block_correct_helper[local]:
∀phis es.
map (λx. case x of
Phi r t largs =>
case option_map (λarg. translate_arg gmap emap arg) (alookup largs from_l) of
None => (translate_reg r t,Nondet)
| Some e => (translate_reg r t,e)) phis =
map2 (λp e. case p of Phi r t largs => (translate_reg r t,e)) phis es
length phis = length es
es = map (λx. case x of Phi r t largs =>
case option_map (λarg. translate_arg gmap emap arg) (alookup largs from_l) of
None => Nondet
| Some e => e)
phis
Proof
Induct >> rw [] >> Cases_on `es` >> fs [] >>
CASE_TAC >> fs [] >> CASE_TAC >> fs []
QED
Theorem build_phi_block_correct:
∀prog s1 s1' to_l from_l phis updates f gmap emap entry bloc.
prog_ok prog is_ssa prog
get_instr prog s1.ip (Inr (from_l,phis))
map (do_phi from_l s1) phis = map Some updates
mem_state_rel prog gmap emap s1 s1'
BIGUNION (set (map (phi_uses from_l) phis)) live prog s1.ip
bloc = generate_move_block f gmap emap phis from_l to_l
∃s2'.
s2'.bp = translate_label f (Some to_l) 0
step_block (translate_prog prog) s1' bloc.cmnd bloc.term [Tau; Tau] s2'
mem_state_rel prog gmap
(emap |++ header_to_emap_upd (Head phis None))
(inc_pc (s1 with locals := s1.locals |++ updates)) s2'
Proof
rw [translate_header_def, generate_move_block_def] >>
rw [Once step_block_cases] >>
rw [Once step_block_cases] >>
rw [step_term_cases, PULL_EXISTS] >>
simp [Once eval_exp_cases, truncate_2comp_def] >>
drule do_phi_vals >> ntac 2 (disch_then drule) >>
rw [] >> drule build_phi_block_correct_helper >>
pop_assum kall_tac >>
`length phis = length es` by metis_tac [LENGTH_MAP, LIST_REL_LENGTH] >>
disch_then drule >>
rw [] >> fs [LIST_REL_MAP1, combinTheory.o_DEF, case_phi_lift] >>
simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `0` >> qexists_tac `vs` >> rw []
>- (
simp [LIST_REL_MAP1, combinTheory.o_DEF] >> fs [LIST_REL_EL_EQN] >>
rw [] >>
first_x_assum (qspec_then `n` mp_tac) >> simp [] >>
CASE_TAC >> simp [] >> CASE_TAC >> simp [build_move_for_lab_def] >>
CASE_TAC >> simp [] >> fs []) >>
fs [header_to_emap_upd_def] >>
simp [llvmTheory.inc_pc_def, update_results_def] >>
`s1.ip with i := inc_bip s1.ip.i next_ips prog s1.ip`
by (
simp [next_ips_cases, IN_DEF, inc_pc_def] >> disj2_tac >>
qexists_tac `from_l` >> qexists_tac `phis` >>
fs [get_instr_cases, EXISTS_OR_THM, inc_bip_def, prog_ok_def] >>
res_tac >> Cases_on `b.body` >> fs []) >>
fs [mem_state_rel_def] >> rw []
>- (
`map fst (map (λx. case x of Phi r t v2 => (r,t)) phis) =
map phi_assigns phis`
by (rw [LIST_EQ_REWRITE, EL_MAP] >> CASE_TAC >> rw [phi_assigns_def]) >>
first_assum (mp_then.mp_then mp_then.Any mp_tac local_state_rel_updates_keep) >>
rpt (disch_then (fn x => first_assum (mp_then.mp_then mp_then.Any mp_tac x))) >>
disch_then
(qspecl_then [`map (λ(x:phi). case x of Phi r t _ => (r,t)) phis`,
`map snd updates`, `vs`] mp_tac) >>
simp [] >> impl_tac >> rw [id2]
>- (
rw [assigns_cases, EXTENSION, IN_DEF] >>
metis_tac [get_instr_func, sum_distinct, INR_11, PAIR_EQ])
>- metis_tac [LENGTH_MAP]
>- rw [LIST_REL_MAP1, combinTheory.o_DEF] >>
fs [MAP_MAP_o, combinTheory.o_DEF, case_phi_lift] >>
`zip (map phi_assigns phis, map snd updates) = updates`
by (
qpat_x_assum `map fst _ = map phi_assigns _` mp_tac >>
simp [LIST_EQ_REWRITE, EL_MAP] >>
`length phis = length updates` by metis_tac [LENGTH_MAP] >>
rw [EL_ZIP, LENGTH_MAP, EL_MAP] >>
rename1 `_ = el n updates` >>
first_x_assum drule >>
Cases_on `el n updates` >> rw []) >>
`(λx. case x of Phi r t v2 => translate_reg r t) = (λx. fst (build_move_for_lab gmap emap from_l x))`
by (
rw [FUN_EQ_THM] >>
CASE_TAC >> rw [build_move_for_lab_def] >> CASE_TAC >> rw []) >>
fs [])
>- (irule next_ips_reachable >> qexists_tac `s1.ip` >> rw [])
QED
Triviality classify_instr_lem:
(∀i. terminator i classify_instr i = Term)
(∀i. is_call i classify_instr i = Call)
Proof
strip_tac >> Cases_on `i` >> rw [terminator_def, classify_instr_def, is_call_def] >>
Cases_on `p` >> rw [classify_instr_def]
QED
Theorem translate_instrs_take_to_call:
∀l gmap emap regs body.
body [] terminator (last body)
fst (translate_instrs l gmap emap regs (take_to_call body)) =
[HD (fst (translate_instrs l gmap emap regs body))]
Proof
Induct_on `body` >> rw [translate_instrs_def, take_to_call_def] >>
rename1 `classify_instr inst` >> Cases_on `classify_instr inst` >> fs [] >>
fs [classify_instr_lem] >> rw [] >> fs []
>- (
`body []` by (Cases_on `body` >> fs []) >>
fs [LAST_DEF] >>
pairarg_tac >> fs [])
>- (
`body []` by (Cases_on `body` >> fs []) >>
fs [LAST_DEF] >>
pairarg_tac >> fs [] >> pairarg_tac >> fs [] >>
`bs = [HD bs']` by metis_tac [FST] >>
Cases_on `bs'` >> fs []
>- metis_tac [translate_instrs_not_empty] >>
Cases_on `h` >> fs [add_to_first_block_def])
>- (
`body []` by (Cases_on `body` >> fs []) >>
fs [LAST_DEF] >>
pairarg_tac >> fs [])
>- (
`body []` by (Cases_on `body` >> fs []) >>
fs [LAST_DEF] >>
pairarg_tac >> fs [] >> pairarg_tac >> fs [] >>
`bs = [HD bs']` by metis_tac [FST] >>
Cases_on `bs'` >> fs []
>- metis_tac [translate_instrs_not_empty] >>
Cases_on `h` >> fs [add_to_first_block_def])
QED
Theorem multi_step_to_step_block:
∀prog emap s1 tr s2 s1'.
prog_ok prog is_ssa prog
multi_step prog s1 tr s2
s1.status = Partial
state_rel prog (get_gmap prog) emap s1 s1'
∃s2' emap2 b tr'.
get_block (translate_prog prog) s1'.bp b
step_block (translate_prog prog) s1' b.cmnd b.term tr' s2'
filter ($ Tau) tr' = filter ($ Tau) (map (translate_trace (get_gmap prog)) tr)
state_rel prog (get_gmap prog) emap2 s2 s2'
Proof
rw [] >> pop_assum mp_tac >> simp [Once state_rel_def] >> rw [Once pc_rel_cases]
>- (
(* Non-phi instruction *)
drule translate_instrs_correct1 >> simp [] >>
disch_then drule >>
rfs [] >> disch_then drule >> rw [] >>
qexists_tac `s2'` >> simp [] >>
ntac 3 HINT_EXISTS_TAC >>
rw [] >> fs [dest_fn_def]) >>
(* Phi instruction *)
reverse (fs [Once multi_step_cases])
>- metis_tac [get_instr_func, sum_distinct] >>
qpat_x_assum `last_step _ _ _ _` mp_tac >>
simp [last_step_cases] >> strip_tac
>- (
fs [llvmTheory.step_cases]
>- metis_tac [get_instr_func, sum_distinct] >>
fs [translate_trace_def] >> rw [] >>
`(from_l', phis') = (from_l, phis) x = (from_l, phis)` by metis_tac [get_instr_func, INR_11] >>
fs [] >> rw [] >>
rfs [MEM_MAP] >>
Cases_on `s1.ip.f` >> fs [dest_fn_def] >>
drule get_block_translate_prog_mov >> rpt (disch_then drule) >> rw [PULL_EXISTS] >>
`∃block l. alookup d.blocks (Some (Lab to_l)) = Some block block.h = Head phis l`
by (
fs [prog_ok_def, EVERY_MEM] >>
last_x_assum drule >> disch_then drule >> rw [] >>
first_x_assum drule >> rw [] >>
rw [] >>
fs [get_instr_cases] >>
rfs [] >> rw [] >> fs []) >>
first_x_assum drule >> rw [] >>
qmatch_assum_abbrev_tac `get_block _ _ bloc` >>
GEN_EXISTS_TAC "b" `bloc` >>
rw [] >>
drule build_phi_block_correct >> rpt (disch_then drule) >>
simp [Abbr `bloc`] >>
disch_then (qspecl_then [`Lab to_l`, `s`] mp_tac) >>
simp [] >>
impl_tac
>- (
drule get_instr_live >> rw [SUBSET_DEF, uses_cases, IN_DEF] >>
first_x_assum irule >> disj2_tac >> metis_tac []) >>
rw [] >>
qexists_tac `s2'` >> qexists_tac `emap |++ header_to_emap_upd (Head phis None)` >>
qexists_tac `[Tau; Tau]` >> rw []
>- (
(* TODO: This isn't true and will require a more subtle treatment of the
* emap in this proof overall *)
`emap = emap'` by cheat >>
metis_tac []) >>
fs [state_rel_def] >> rw [] >>
fs [llvmTheory.inc_pc_def] >>
fs [pc_rel_cases, get_instr_cases, PULL_EXISTS, translate_label_def,
dest_fn_def, inc_bip_def, label_to_fname_def] >>
fs [] >> rw [] >> fs [get_block_cases, PULL_EXISTS, label_to_fname_def] >>
rfs [] >> rw [] >>
drule alookup_translate_prog >> rw [] >>
rw [GSYM PULL_EXISTS]
>- (fs [prog_ok_def] >> res_tac >> fs [] >> Cases_on `b'.body` >> fs []) >>
rw [PULL_EXISTS, translate_def_def] >>
`b'.body [] terminator (last b'.body)
every (λi. ¬terminator i) (front b'.body)
every (λb. (snd b).h = Entry fst b = None) d.blocks
0 num_calls b'.body`
by (
fs [prog_ok_def] >> res_tac >> fs [] >>
fs [EVERY_MEM]) >>
drule alookup_translate_blocks >> rpt (disch_then drule) >>
simp [translate_label_def] >>
disch_then (qspecl_then [`s`, `get_gmap prog`, `fempty`, `get_regs_to_keep d`,
`map (λ(l,b). (l,get_from_ls l d.blocks)) d.blocks`]
mp_tac) >>
rw [] >> rw [dest_label_def, num_calls_def] >>
rename1 `alookup _ _ = Some (snd (HD (fst (translate_instrs _ _ emap1 _ _))))` >>
(* TODO: This isn't true and will require a more subtle treatment of the
* emap in this proof overall *)
`emap1 = emap |++ header_to_emap_upd (Head phis None)` by cheat >>
rw [translate_instrs_take_to_call] >>
qexists_tac `get_regs_to_keep d` >> rw [] >>
qmatch_goalsub_abbrev_tac `_ = HD (fst (translate_instrs a1 b1 c1 d1 e1))` >>
Cases_on `translate_instrs a1 b1 c1 d1 e1` >> rw [] >>
rename1 `_ = HD bl` >> Cases_on `bl` >> rw []
>- metis_tac [translate_instrs_not_empty, classify_instr_lem] >>
rename1 `(_,_) = bl` >> Cases_on `bl` >> rw [] >>
metis_tac [translate_instrs_first_lab])
>- metis_tac [get_instr_func, sum_distinct]
>- metis_tac [get_instr_func, sum_distinct]
>- (
(* TODO: LLVM "eval" gets stuck *)
cheat)
QED
Theorem step_block_to_multi_step:
∀prog s1 s1' tr s2' b.
state_rel prog gmap emap s1 s1'
get_block (translate_prog prog) s1'.bp b
step_block (translate_prog prog) s1' b.cmnd b.term tr s2'
∃s2.
multi_step prog s1 (map untranslate_trace tr) s2
state_rel prog gmap emap s2 s2'
Proof
(* TODO, LLVM can simulate llair direction *)
5 years ago
cheat
QED
Theorem trans_trace_not_tau:
∀types. ($ Tau) translate_trace types = ($ Tau)
Proof
rw [FUN_EQ_THM] >> eq_tac >> rw [translate_trace_def] >>
TRY (Cases_on `y`) >> fs [translate_trace_def]
QED
Theorem untrans_trace_not_tau:
∀types. ($ Tau) untranslate_trace = ($ Tau)
Proof
rw [FUN_EQ_THM] >> eq_tac >> rw [untranslate_trace_def] >>
TRY (Cases_on `y`) >> fs [untranslate_trace_def]
QED
Theorem translate_prog_correct_lem1:
∀path.
okpath (multi_step prog) path finite path
∀emap s1'.
prog_ok prog
is_ssa prog
state_rel prog (get_gmap prog) emap (first path) s1'
∃path' emap.
finite path'
okpath (step (translate_prog prog)) path'
first path' = s1'
LMAP (filter ($ Tau)) (labels path') =
LMAP (map (translate_trace (get_gmap prog)) o filter ($ Tau)) (labels path)
state_rel prog (get_gmap prog) emap (last path) (last path')
Proof
ho_match_mp_tac finite_okpath_ind >> rw []
>- (qexists_tac `stopped_at s1'` >> rw [] >> metis_tac []) >>
fs [] >>
rename1 `state_rel _ _ _ s1 s1'` >>
Cases_on `s1.status Partial`
>- fs [Once multi_step_cases, llvmTheory.step_cases, last_step_cases] >>
fs [] >>
drule multi_step_to_step_block >> ntac 4 (disch_then drule) >> rw [] >>
first_x_assum drule >> rw [] >>
qexists_tac `pcons s1' tr' path'` >> rw [] >>
rw [FILTER_MAP, combinTheory.o_DEF, trans_trace_not_tau] >>
HINT_EXISTS_TAC >> simp [] >>
simp [step_cases] >> qexists_tac `b` >> simp [] >>
qpat_x_assum `state_rel _ _ _ _ s1'` mp_tac >>
rw [state_rel_def, mem_state_rel_def]
QED
Theorem translate_prog_correct_lem2:
∀path'.
okpath (step (translate_prog prog)) path' finite path'
∀s1.
prog_ok prog
state_rel prog gmap emap s1 (first path')
∃path.
finite path
okpath (multi_step prog) path
first path = s1
labels path = LMAP (map untranslate_trace) (labels path')
state_rel prog gmap emap (last path) (last path')
Proof
ho_match_mp_tac finite_okpath_ind >> rw []
>- (qexists_tac `stopped_at s1` >> rw []) >>
fs [step_cases] >>
drule step_block_to_multi_step >> ntac 2 (disch_then drule) >> rw [] >>
first_x_assum drule >> rw [] >>
qexists_tac `pcons s1 (map untranslate_trace r) path` >> rw []
QED
Theorem translate_global_var_11:
∀path.
okpath (step (translate_prog prog)) path finite path
∀x t1 bytes t2 l.
labels path = fromList l
MEM (W (Var_name x t1) bytes) (flat l)
MEM (W (Var_name x t2) bytes) (flat l)
t1 = t2
Proof
(* TODO, LLVM can simulate llair direction *)
cheat
QED
Theorem prefix_take_filter_lemma:
∀l lsub.
lsub l
filter (λy. Tau y) lsub =
take (length (filter (λy. Tau y) lsub)) (filter (λy. Tau y) l)
Proof
Induct_on `lsub` >> rw [] >>
Cases_on `l` >> fs [] >> rw []
QED
Theorem multi_step_lab_label:
∀prog s1 ls s2.
multi_step prog s1 ls s2 s2.status Partial
∃ls'. (∃i. ls = ls' ++ [Exit i]) ls = ls' ++ [Error]
Proof
ho_match_mp_tac multi_step_ind >> rw [] >> fs [] >>
fs [last_step_cases, llvmTheory.step_cases, step_instr_cases,
update_result_def, llvmTheory.inc_pc_def] >>
rw [] >> fs []
QED
Theorem prefix_filter_len_eq:
∀l1 l2 x.
l1 l2 ++ [x]
length (filter P l1) = length (filter P (l2 ++ [x]))
P x
l1 = l2 ++ [x]
Proof
Induct_on `l1` >> rw [FILTER_APPEND] >>
Cases_on `l2` >> fs [] >> rw [] >> rfs [ADD1] >>
first_x_assum irule >> rw [FILTER_APPEND]
QED
Theorem translate_prog_correct:
∀prog s1 s1'.
prog_ok prog is_ssa prog
state_rel prog (get_gmap prog) emap s1 s1'
multi_step_sem prog s1 = image (I ## map untranslate_trace) (sem (translate_prog prog) s1')
Proof
rw [sem_def, multi_step_sem_def, EXTENSION] >> eq_tac >> rw []
>- (
drule translate_prog_correct_lem1 >> ntac 4 (disch_then drule) >> rw [EXISTS_PROD] >>
PairCases_on `x` >> rw [] >>
qexists_tac `map (translate_trace (get_gmap prog)) x1` >> rw []
>- rw [MAP_MAP_o, combinTheory.o_DEF, un_translate_trace_inv] >>
qexists_tac `path'` >> rw [] >>
fs [IN_DEF, observation_prefixes_cases, toList_some] >> rw [] >>
`∃labs. labels path' = fromList labs`
by (
fs [GSYM finite_labels] >>
imp_res_tac llistTheory.LFINITE_toList >>
fs [toList_some]) >>
fs [] >>
rfs [lmap_fromList, combinTheory.o_DEF, MAP_MAP_o] >>
simp [FILTER_FLAT, MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, FILTER_MAP]
>- fs [state_rel_def, mem_state_rel_def]
>- fs [state_rel_def, mem_state_rel_def] >>
rename [`labels path' = fromList l'`, `labels path = fromList l`,
`state_rel _ _ _ (last path) (last path')`, `lsub flat l`] >>
Cases_on `lsub = flat l` >> fs []
>- (
qexists_tac `flat l'` >>
rw [FILTER_FLAT, MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF] >>
fs [state_rel_def, mem_state_rel_def]) >>
`filter (λy. Tau y) (flat l') = map (translate_trace (get_gmap prog)) (filter (λy. Tau y) (flat l))`
by rw [FILTER_FLAT, MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, FILTER_MAP] >>
qexists_tac `take_prop ($ Tau) (length (filter ($ Tau) lsub)) (flat l')` >>
rw [] >> rw [GSYM MAP_TAKE]
>- metis_tac [prefix_take_filter_lemma] >>
CCONTR_TAC >> fs [] >>
`(last path).status = (last path').status` by fs [state_rel_def, mem_state_rel_def] >>
drule take_prop_eq >> strip_tac >>
`length (filter (λy. Tau y) (flat l')) = length (filter (λy. Tau y) (flat l))`
by rw [] >>
fs [] >> drule filter_is_prefix >>
disch_then (qspec_then `$ Tau` assume_tac) >>
drule IS_PREFIX_LENGTH >> strip_tac >> fs [] >>
`length (filter (λy. Tau y) lsub) = length (filter (λy. Tau y) (flat l))` by rw [] >>
fs [] >> rw [] >>
qspec_then `path` assume_tac finite_path_end_cases >> rfs [] >> fs [] >> rw []
>- (`l = []` by metis_tac [llistTheory.fromList_EQ_LNIL] >> fs [] >> rfs []) >>
rfs [labels_plink] >>
rename1 `LAPPEND (labels path) [|last_l'|] = _` >>
`toList (LAPPEND (labels path) [|last_l'|]) = Some l` by metis_tac [llistTheory.from_toList] >>
drule llistTheory.toList_LAPPEND_APPEND >> strip_tac >>
fs [llistTheory.toList_THM] >> rw [] >>
drule multi_step_lab_label >> strip_tac >> rfs [] >> fs [] >>
drule prefix_filter_len_eq >> rw [] >>
qexists_tac `$ Tau` >> rw [])
>- (
fs [toList_some] >>
drule translate_prog_correct_lem2 >> simp [] >>
disch_then drule >> rw [] >>
qexists_tac `path'` >> rw [] >>
fs [IN_DEF, observation_prefixes_cases, toList_some] >> rw [] >>
rfs [lmap_fromList] >>
simp [GSYM MAP_FLAT, FILTER_MAP, untrans_trace_not_tau]
>- fs [state_rel_def, mem_state_rel_def]
>- fs [state_rel_def, mem_state_rel_def] >>
qexists_tac `map untranslate_trace l2'` >>
simp [GSYM MAP_FLAT, FILTER_MAP, untrans_trace_not_tau] >>
`INJ untranslate_trace (set l2' set (flat l2)) UNIV`
by (
drule is_prefix_subset >> rw [SUBSET_DEF] >>
`set l2' set (flat l2) = set (flat l2)` by (rw [EXTENSION] >> metis_tac []) >>
simp [] >>
simp [INJ_DEF] >> rpt gen_tac >>
Cases_on `x` >> Cases_on `y` >> simp [untranslate_trace_def] >>
Cases_on `a` >> Cases_on `a'` >> simp [untranslate_glob_var_def] >>
metis_tac [translate_global_var_11]) >>
fs [INJ_MAP_EQ_IFF, inj_map_prefix_iff] >> rw [] >>
fs [state_rel_def, mem_state_rel_def])
QED
5 years ago
export_theory ();