You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

965 lines
35 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Properties of the mini-LLVM model *)
open HolKernel boolLib bossLib Parse;
open pairTheory listTheory rich_listTheory arithmeticTheory wordsTheory;
open pred_setTheory finite_mapTheory relationTheory llistTheory pathTheory;
open logrootTheory numposrepTheory;
open settingsTheory miscTheory memory_modelTheory llvmTheory;
new_theory "llvm_prop";
numLib.prefer_num();
(* ----- Theorems about converting between values and byte lists ----- *)
Theorem value_type_is_fc:
∀t v. value_type t v first_class_type t
Proof
ho_match_mp_tac value_type_ind >> rw [first_class_type_def] >>
fs [LIST_REL_EL_EQN, EVERY_EL]
QED
Theorem sizeof_type_to_shape:
∀t. first_class_type t sizeof (type_to_shape t) = sizeof t
Proof
recInduct type_to_shape_ind >>
rw [type_to_shape_def, memory_modelTheory.sizeof_def, llvmTheory.sizeof_def,
first_class_type_def, EVERY_MEM] >>
qid_spec_tac `vs` >> Induct_on `ts` >> rw [] >> fs []
QED
Theorem value_type_to_shape:
∀t v.
value_type t v
∀s.
value_shape (\n t x. n = fst (unconvert_value x) value_type t (FlatV x)) (type_to_shape t) v
Proof
ho_match_mp_tac value_type_ind >>
rw [memory_modelTheory.sizeof_def, llvmTheory.sizeof_def, type_to_shape_def,
unconvert_value_def, value_shape_def] >>
fs [value_shapes_list_rel, LIST_REL_CONJ, ETA_THM, EVERY2_MAP] >>
metis_tac [value_type_rules]
QED
Theorem llvm_v2b_size:
∀t v. value_type t v length (llvm_value_to_bytes v) = sizeof t
Proof
rw [llvm_value_to_bytes_def] >>
drule value_type_to_shape >> rw [] >>
drule value_type_is_fc >> rw [] >>
drule sizeof_type_to_shape >>
disch_then (mp_tac o GSYM) >> rw [] >>
irule v2b_size >> rw [] >>
qmatch_assum_abbrev_tac `value_shape f _ _` >>
qexists_tac `f` >> rw [] >>
unabbrev_all_tac >> fs []
QED
Theorem b2llvm_v_size:
∀t bs. first_class_type t sizeof t length bs
∃v. bytes_to_llvm_value t bs = (v, drop (sizeof t) bs)
Proof
rw [bytes_to_llvm_value_def] >>
drule sizeof_type_to_shape >> disch_then (mp_tac o GSYM) >> rw [] >>
fs [PAIR_MAP] >>
metis_tac [SND, b2v_size]
QED
Theorem b2llvm_v_smaller:
∀t bs. first_class_type t sizeof t length bs
length (snd (bytes_to_llvm_value t bs)) = length bs - sizeof t
Proof
rw [bytes_to_llvm_value_def] >>
metis_tac [b2v_smaller, sizeof_type_to_shape]
QED
Theorem b2llvm_v_append:
∀t bs bs'. first_class_type t sizeof t length bs
bytes_to_llvm_value t (bs ++ bs') = (I ## (λx. x ++ bs')) (bytes_to_llvm_value t bs)
Proof
rw [bytes_to_llvm_value_def] >>
drule sizeof_type_to_shape >> disch_then (mp_tac o GSYM) >> rw [] >> fs [] >>
rw [PAIR_MAP, b2v_append]
QED
Theorem b2v_llvm_v2b:
∀v t bs. value_type t v bytes_to_llvm_value t (llvm_value_to_bytes v ++ bs) = (v, bs)
Proof
rw [bytes_to_llvm_value_def, llvm_value_to_bytes_def] >>
drule value_type_to_shape >> rw [] >>
qmatch_assum_abbrev_tac `value_shape f _ _` >>
irule b2v_v2b >>
qexists_tac `f` >> rw [] >>
unabbrev_all_tac >> fs [] >>
5 years ago
fs [unconvert_value_def, convert_value_def, value_type_cases, pointer_size_def] >>
wordsLib.WORD_DECIDE_TAC
QED
(* ----- Theorems about insert/extract value and get_offset ----- *)
Theorem can_extract:
∀v indices t.
indices_ok t indices value_type t v extract_value v indices None
Proof
recInduct extract_value_ind >> rw [extract_value_def]
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [LIST_REL_LENGTH])
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [EVERY_EL, LIST_REL_EL_EQN]) >>
Cases_on `t` >> fs [indices_ok_def] >> simp [value_type_cases]
QED
Theorem can_insert:
∀v v2 indices t.
indices_ok t indices value_type t v insert_value v v2 indices None
Proof
recInduct insert_value_ind >> rw [insert_value_def]
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [LIST_REL_LENGTH])
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
CASE_TAC >> fs [] >> rfs [] >>
metis_tac [EVERY_EL, LIST_REL_EL_EQN]) >>
Cases_on `t` >> fs [indices_ok_def] >> simp [value_type_cases]
QED
Theorem extract_insertvalue:
∀v1 v2 indices v3.
insert_value v1 v2 indices = Some v3
extract_value v3 indices = Some v2
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
pop_assum mp_tac >> CASE_TAC >> fs [] >> rfs [] >>
rw [] >> simp [extract_value_def, EL_LUPDATE]
QED
Theorem extract_insertvalue_other:
∀v1 v2 indices1 indices2 v3.
insert_value v1 v2 indices1 = Some v3
¬(indices1 indices2) ¬(indices2 indices1)
extract_value v3 indices2 = extract_value v1 indices2
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
qpat_x_assum `_ = SOME _` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
qpat_x_assum `¬case _ of [] => F | h::t => P h t` mp_tac >>
CASE_TAC >> fs [] >> rename1 `idx::is` >>
fs [extract_value_def] >> rw [EL_LUPDATE]
QED
Theorem insert_extractvalue:
∀v1 indices v2.
extract_value v1 indices = Some v2
insert_value v1 v2 indices = Some v1
Proof
recInduct extract_value_ind >> rw [insert_value_def, extract_value_def] >> fs [] >>
rw [LUPDATE_SAME]
QED
Definition indices_in_range_def:
(indices_in_range t [] T)
(indices_in_range (ArrT n t) (i::is)
i < n indices_in_range t is)
(indices_in_range (StrT ts) (i::is)
i < length ts indices_in_range (el i ts) is)
(indices_in_range _ _ F)
End
(* The strict inequality does not hold because of 0 length arrays *)
Theorem offset_size_leq:
∀t indices n.
indices_in_range t indices get_offset t indices = Some n
n sizeof t
Proof
recInduct get_offset_ind >> rw [get_offset_def, llvmTheory.sizeof_def, indices_in_range_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >> rw [] >> rfs []
>- (
`x + i * sizeof t (i + 1) * sizeof t` by decide_tac >>
`i + 1 v1` by decide_tac >>
metis_tac [LESS_MONO_MULT, LESS_EQ_TRANS]) >>
rw [MAP_TAKE, ETA_THM] >>
`take (Suc i) (map sizeof ts) = take i (map sizeof ts) ++ [sizeof (el i ts)]`
by rw [GSYM SNOC_EL_TAKE, EL_MAP] >>
`take (Suc i) (map sizeof ts) (map sizeof ts)` by rw [take_is_prefix] >>
drule sum_prefix >> rw [SUM_APPEND]
QED
Theorem extract_type_fc:
∀t is t'. extract_type t is = Some t' first_class_type t first_class_type t'
Proof
recInduct extract_type_ind >> rw [extract_type_def, first_class_type_def] >>
rw [] >> fs [] >> fs [EVERY_EL]
QED
Theorem extract_offset_size:
∀t indices n t'.
extract_type t indices = Some t'
get_offset t indices = Some n
sizeof t' sizeof t - n
Proof
recInduct get_offset_ind >> rw [get_offset_def, extract_type_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [llvmTheory.sizeof_def] >> rfs [] >> rw [ETA_THM]
>- (
`sizeof t (v1 i) * sizeof t` suffices_by decide_tac >>
`1 v1 - i` by decide_tac >>
rw []) >>
rw [MAP_TAKE] >>
`sizeof (el i ts) sum (map sizeof ts) (sum (take i (map sizeof ts)))`
suffices_by decide_tac >>
qpat_x_assum `_ < _` mp_tac >> rpt (pop_assum kall_tac) >> qid_spec_tac `i` >>
Induct_on `ts` >> rw [TAKE_def, EL_CONS, PRE_SUB1]
QED
Theorem llvm_value_to_bytes_agg:
∀vs. llvm_value_to_bytes (AggV vs) = flat (map llvm_value_to_bytes vs)
Proof
Induct >> rw [] >> fs [llvm_value_to_bytes_def, value_to_bytes_def]
QED
Theorem read_from_offset_extract:
∀t indices n v t'.
indices_in_range t indices
get_offset t indices = Some n
value_type t v
extract_type t indices = Some t'
extract_value v indices = Some (fst (bytes_to_llvm_value t' (drop n (llvm_value_to_bytes v))))
Proof
recInduct get_offset_ind >>
rw [extract_value_def, get_offset_def, extract_type_def, indices_in_range_def] >>
simp [DROP_0]
>- metis_tac [APPEND_NIL, FST, b2v_llvm_v2b] >>
qpat_x_assum `value_type _ _` mp_tac >>
simp [Once value_type_cases] >> rw [] >> simp [extract_value_def] >>
qpat_x_assum `_ = Some n` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
simp [llvm_value_to_bytes_agg]
>- (
`value_type t (el i vs)` by metis_tac [EVERY_EL] >>
first_x_assum drule >>
rw [] >> simp [GSYM DROP_DROP_T, ETA_THM] >>
`i * sizeof t = length (flat (take i (map llvm_value_to_bytes vs)))`
by (
simp [LENGTH_FLAT, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`map (λx. length (llvm_value_to_bytes x)) vs = replicate (length vs) (sizeof t)`
by (
qpat_x_assum `every _ _` mp_tac >> rpt (pop_assum kall_tac) >>
Induct_on `vs` >> rw [llvm_v2b_size]) >>
rw [take_replicate, MIN_DEF]) >>
rw [GSYM flat_drop, GSYM MAP_DROP] >>
drule DROP_CONS_EL >> simp [DROP_APPEND] >> disch_then kall_tac >>
`first_class_type t'` by metis_tac [value_type_is_fc, extract_type_fc] >>
`sizeof t' length (drop x (llvm_value_to_bytes (el i vs)))`
by (simp [LENGTH_DROP] >> drule llvm_v2b_size >> rw [] >> metis_tac [extract_offset_size]) >>
simp [b2llvm_v_append])
>- metis_tac [LIST_REL_LENGTH]
>- (
`value_type (el i ts) (el i vs)` by metis_tac [LIST_REL_EL_EQN] >>
first_x_assum drule >>
rw [] >> simp [GSYM DROP_DROP_T, ETA_THM] >>
`sum (map sizeof (take i ts)) = length (flat (take i (map llvm_value_to_bytes vs)))`
by (
simp [LENGTH_FLAT, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`map sizeof ts = map (\x. length (llvm_value_to_bytes x)) vs`
by (
qpat_x_assum `list_rel _ _ _` mp_tac >> rpt (pop_assum kall_tac) >>
qid_spec_tac `ts` >>
Induct_on `vs` >> rw [] >> rw [llvm_v2b_size]) >>
rw []) >>
rw [GSYM flat_drop, GSYM MAP_DROP] >>
`i < length vs` by metis_tac [LIST_REL_LENGTH] >>
drule DROP_CONS_EL >> simp [DROP_APPEND] >> disch_then kall_tac >>
`first_class_type t'` by metis_tac [value_type_is_fc, extract_type_fc] >>
`sizeof t' length (drop x (llvm_value_to_bytes (el i vs)))`
by (simp [LENGTH_DROP] >> drule llvm_v2b_size >> rw [] >> metis_tac [extract_offset_size]) >>
simp [b2llvm_v_append])
QED
(* ----- Theorems about the step function ----- *)
Theorem get_instr_func:
∀p ip i1 i2. get_instr p ip i1 get_instr p ip i2 i1 = i2
Proof
rw [get_instr_cases] >> fs [] >> rw [] >> fs [] >> rw [] >> fs []
QED
Theorem inc_pc_invariant:
∀p s i. prog_ok p get_instr p s.ip (Inl i) ¬terminator i state_invariant p s state_invariant p (inc_pc s)
Proof
rw [state_invariant_def, inc_pc_def, allocations_ok_def, globals_ok_def,
stack_ok_def, frame_ok_def, heap_ok_def, EVERY_EL, ip_ok_def, inc_bip_def,
METIS_PROVE [] ``x y ~x y``]
>- (
qexists_tac `dec` >> qexists_tac `block'` >> rw [] >>
fs [prog_ok_def, get_instr_cases] >> res_tac >> rw [] >>
Cases_on `s.ip.i` >> fs [] >> rw [] >> fs [inc_bip_def] >>
`idx length block'.body - 1` suffices_by decide_tac >>
CCONTR_TAC >> fs [] >> rfs [LAST_EL, PRE_SUB1]) >>
metis_tac []
QED
Theorem get_instr_update:
∀p s i r v. get_instr p (update_result r v s).ip i <=> get_instr p s.ip i
Proof
rw [get_instr_cases, update_result_def]
QED
Theorem update_invariant:
∀r v s. state_invariant p (update_result r v s) state_invariant p s
Proof
rw [update_result_def, state_invariant_def, ip_ok_def, allocations_ok_def,
globals_ok_def, stack_ok_def, heap_ok_def, EVERY_EL, frame_ok_def]
QED
Theorem allocate_invariant:
∀p s1 v1 t v2 h2.
state_invariant p s1 allocate s1.heap v1 t (v2,h2) state_invariant p (s1 with heap := h2)
Proof
rw [state_invariant_def, ip_ok_def, globals_ok_def, stack_ok_def,
METIS_PROVE [] ``x y ~x y``]
>- metis_tac [allocate_heap_ok]
>- (fs [is_allocated_def] >> metis_tac [allocate_unchanged, SUBSET_DEF])
>- (
fs [EVERY_EL, frame_ok_def, allocate_unchanged] >> rw [] >>
metis_tac [allocate_unchanged, SUBSET_DEF])
QED
Theorem set_bytes_invariant:
∀s poison bytes n prog b.
state_invariant prog s is_allocated (Interval b n (n + length bytes)) s.heap
state_invariant prog (s with heap := set_bytes poison bytes n s.heap)
Proof
rw [state_invariant_def]
>- metis_tac [set_bytes_heap_ok]
>- (fs [globals_ok_def, is_allocated_def, set_bytes_unchanged] >> metis_tac [])
>- (fs [stack_ok_def, EVERY_EL, frame_ok_def, set_bytes_unchanged])
QED
Triviality not_none_eq:
!x. x None ?y. x = Some y
Proof
Cases >> rw []
QED
Theorem step_instr_invariant:
∀p s1 i l s2.
step_instr p s1 i l s2 prog_ok p get_instr p s1.ip (Inl i) state_invariant p s1
state_invariant p s2
Proof
ho_match_mp_tac step_instr_ind >> rw []
>- ( (* Ret *)
rw [update_invariant] >> fs [state_invariant_def] >> rw []
>- (
fs [stack_ok_def] >> rfs [EVERY_EL, frame_ok_def] >>
first_x_assum (qspec_then `0` mp_tac) >> simp [])
>- (
fs [heap_ok_def, deallocate_def, allocations_ok_def] >> rw []
>- metis_tac []
>- metis_tac [] >>
fs [deallocate_def, heap_ok_def] >> rw [flookup_fdiff] >>
eq_tac >> rw []
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE]
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE] >>
fs [allocations_ok_def, stack_ok_def, EXTENSION] >> metis_tac [])
>- (
fs [globals_ok_def, deallocate_def] >> rw [] >>
first_x_assum drule >> rw [] >> fs [is_allocated_def] >>
qexists_tac `b2` >> rw [] >> CCONTR_TAC >> fs [interval_freeable_def])
>- (
fs [stack_ok_def, EVERY_MEM, frame_ok_def, deallocate_def] >> rfs [] >>
rw []
>- (
res_tac >> rw [] >> qexists_tac `stop` >> rw [] >>
fs [ALL_DISTINCT_APPEND, MEM_FLAT, MEM_MAP] >>
metis_tac [])
>- (
fs [ALL_DISTINCT_APPEND])))
>- ( (* Br *)
fs [state_invariant_def] >> rw []
>- (
rw [ip_ok_def] >> fs [prog_ok_def] >>
qpat_x_assum `alookup _ (Fn "main") = _` kall_tac >>
fs [get_instr_cases] >>
last_x_assum drule >> disch_then drule >> fs [] >> rw [] >>
`terminator (el idx b.body)` by metis_tac [terminator_def] >>
`last b.body = el idx b.body`
by (
Cases_on `idx = PRE (length b.body)` >> fs [EL_PRE_LENGTH] >>
`Suc idx < length b.body` by decide_tac >>
drule mem_el_front >> rw [] >> fs [EVERY_MEM] >>
metis_tac []) >>
qpat_x_assum `Br _ _ _ = _` (assume_tac o GSYM) >> fs [] >>
fs [instr_to_labs_def, not_none_eq] >>
metis_tac [])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac []))
>- ( (* Br *)
fs [state_invariant_def] >> rw []
>- (
rw [ip_ok_def] >> fs [prog_ok_def] >>
qpat_x_assum `alookup _ (Fn "main") = _` kall_tac >>
fs [get_instr_cases] >>
last_x_assum drule >> disch_then drule >> fs [] >> rw [] >>
`terminator (el idx b.body)` by metis_tac [terminator_def] >>
`last b.body = el idx b.body`
by (
Cases_on `idx = PRE (length b.body)` >> fs [EL_PRE_LENGTH] >>
`Suc idx < length b.body` by decide_tac >>
drule mem_el_front >> rw [] >> fs [EVERY_MEM] >>
metis_tac []) >>
qpat_x_assum `Br _ _ _ = _` (assume_tac o GSYM) >> fs [] >>
fs [instr_to_labs_def, not_none_eq] >>
metis_tac [])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac []))
>- (
fs [state_invariant_def, globals_ok_def, stack_ok_def, frame_ok_def,
EVERY_MEM] >>
metis_tac [])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant]>>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Allocation *)
irule inc_pc_invariant >> rw [get_instr_update, update_invariant]
>- metis_tac [allocate_invariant]
>- (fs [get_instr_cases, allocate_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
fs [get_instr_cases] >>
metis_tac [terminator_def])
>- ( (* Store *)
irule inc_pc_invariant >> rw [get_instr_update, update_invariant]
>- (irule set_bytes_invariant >> rw [] >> metis_tac [])
>- (fs [get_instr_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Call *)
rw [state_invariant_def]
>- (fs [prog_ok_def, ip_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- (fs [state_invariant_def, heap_ok_def] >> metis_tac [])
>- (fs [state_invariant_def, globals_ok_def] >> metis_tac [])
>- (
fs [state_invariant_def, stack_ok_def] >> rw []
>- (
rw [frame_ok_def] >> fs [ip_ok_def, prog_ok_def, inc_bip_def] >>
last_x_assum drule >> disch_then drule >> rw [] >>
CCONTR_TAC >> fs [] >> rfs [LAST_EL] >>
Cases_on `length block'.body = idx + 1` >> fs [PRE_SUB1] >>
fs [get_instr_cases] >>
metis_tac [terminator_def])
>- (fs [EVERY_MEM, frame_ok_def] >> metis_tac [])))
QED
Theorem step_invariant:
∀p s1 l s2.
prog_ok p step p s1 l s2 state_invariant p s1
state_invariant p s2
Proof
rw [step_cases]
>- metis_tac [step_instr_invariant] >>
fs [get_instr_cases, inc_pc_def, inc_bip_def, state_invariant_def] >>
rw []
>- (
fs [ip_ok_def, prog_ok_def] >>
metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac [])
QED
Definition is_call_def:
(is_call (Call _ _ _ _) T)
(is_call _ F)
End
Theorem step_same_block:
∀p s1 l s2.
get_instr p s1.ip i step p s1 l s2
(∀i'. i = Inl i' ¬terminator i' ¬is_call i')
s1.ip.f = s2.ip.f
s1.ip.b = s2.ip.b
s2.ip.i = inc_bip s1.ip.i
Proof
simp [step_cases] >>
rpt gen_tac >> disch_tac >> fs [inc_pc_def] >>
`i = Inl i'` by metis_tac [get_instr_func] >>
fs [step_instr_cases] >> rfs [] >>
fs [terminator_def, is_call_def, inc_pc_def, update_result_def]
QED
(* ----- Initial state is ok ----- *)
Theorem init_invariant:
∀p s init. prog_ok p is_init_state s init state_invariant p s
Proof
rw [is_init_state_def, state_invariant_def]
>- (rw [ip_ok_def] >> fs [prog_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- rw [stack_ok_def]
QED
(* ----- A bigger-step semantics ----- *)
Inductive last_step:
(∀p s1 l s2 i.
step p s1 l s2 get_instr p s1.ip i
((∃x. i = Inr x) (∃i'. i = Inl i' (terminator i' is_call i')))
last_step p s1 l s2)
(∀p s1.
(¬∃l s2. step p s1 l s2)
last_step p s1 Error (s1 with status := Stuck))
End
(* Run all of the instructions up-to-and-including the next Call or terminator.
* Stop after the phis too.
* *)
Inductive multi_step:
(∀p s1 s2 l.
last_step p s1 l s2
s1.status = Partial
multi_step p s1 [l] s2)
(∀p s1 s2 s3 i l ls.
step p s1 l s2
s1.status = Partial
get_instr p s1.ip (Inl i)
¬(terminator i is_call i)
multi_step p s2 ls s3
multi_step p s1 (l::ls) s3)
End
Definition multi_step_sem_def:
multi_step_sem p s1 =
{ l1 | ∃path l2. l1 observation_prefixes ((last path).status, flat l2)
toList (labels path) = Some l2
finite path okpath (multi_step p) path first path = s1 }
End
Theorem multi_step_to_step_path:
∀p s1 l s2.
multi_step p s1 l s2
∃path.
finite path okpath (sem_step p) path first path = s1 last path = s2
toList (labels path) = Some l
Proof
ho_match_mp_tac multi_step_ind >> conj_tac
>- (rw [] >> qexists_tac `pcons s1 l (stopped_at s2)` >> fs [sem_step_cases, toList_THM, last_step_cases]) >>
rw [] >>
qexists_tac `pcons s1 l path` >> rw [toList_THM] >>
`LFINITE (labels path)` by metis_tac [finite_labels] >>
simp [sem_step_cases]
QED
Theorem expand_multi_step_path:
∀path. okpath (multi_step prog) path finite path
!l. toList (labels path) = Some l
∃path'.
toList (labels path') = Some (flat l) finite path'
okpath (sem_step prog) path' first path' = first path last path' = last path
Proof
ho_match_mp_tac finite_okpath_ind >> rw []
>- (qexists_tac `stopped_at x` >> fs [toList_THM] >> rw []) >>
fs [toList_THM] >> rw [] >>
first_x_assum drule >> rw [] >>
drule multi_step_to_step_path >> rw [] >>
qexists_tac `plink path'' path'` >> rw [] >>
simp [toList_THM, labels_plink] >>
`LFINITE (LAPPEND (labels path'') (labels path'))` by metis_tac [LFINITE_APPEND, finite_labels] >>
drule LFINITE_toList >> rw [] >> drule toList_LAPPEND_APPEND >> rw []
QED
Theorem contract_step_path:
∀path. okpath (sem_step prog) path finite path
∀l1 l s.
last_step prog (last path) l s
(last path).status = Partial
toList (labels path) = Some l1
∃path' l2.
toList (labels path') = Some l2
flat l2 = l1 ++ [l]
finite path'
okpath (multi_step prog) path' first path' = first path last path' = s
Proof
ho_match_mp_tac finite_okpath_ind >> rw []
>- (
qexists_tac `pcons x [l] (stopped_at s)` >> fs [] >> simp [toList_THM] >>
simp [Once multi_step_cases] >>
fs [toList_THM]) >>
fs [toList_THM] >>
first_x_assum drule >> disch_then drule >> rw [] >>
Cases_on `last_step prog x r (first path)`
>- (
qexists_tac `pcons x [r] path'` >> simp [] >>
fs [sem_step_cases] >>
simp [Once multi_step_cases, toList_THM] >>
simp [last_step_cases])
>- (
qpat_x_assum `okpath (multi_step _) _` mp_tac >>
simp [Once okpath_cases] >> rw [] >> fs [toList_THM] >> rw [] >> fs [] >>
qexists_tac `pcons x (r::r') p` >> fs [toList_THM] >> rw [Once multi_step_cases] >>
disj2_tac >> qexists_tac `first path` >> rw [] >> fs [sem_step_cases]
>- (fs [last_step_cases, step_cases, get_instr_cases] >> metis_tac []) >>
qpat_x_assum `okpath (sem_step _) _` mp_tac >>
simp [Once okpath_cases, sem_step_cases] >> CCONTR_TAC >> fs [] >> rw [] >>
fs [first_def, last_thm] >> rw [] >> fs [])
QED
Definition get_next_step_def:
get_next_step p s1 =
some (s2, l). sem_step p s1 l s2 ¬last_step p s1 l s2
End
Triviality finite_plink_trivial:
∀path. finite path path = plink path (stopped_at (last path))
Proof
ho_match_mp_tac finite_path_ind >> rw []
QED
Definition instrs_left_def:
instrs_left prog s =
case alookup prog s.ip.f of
| None => 0
| Some d =>
case alookup d.blocks s.ip.b of
| None => 0
| Some b =>
case s.ip.i of
| Phi_ip _ => length b.body + 1
| Offset idx => length b.body - idx
End
Theorem sem_step_stuck:
∀p s1. (∀l s2. ¬sem_step p s1 l s2) s1.status Partial
Proof
rw [sem_step_cases] >> metis_tac []
QED
Theorem sem_step_then_stuck:
∀p s1 l1 s2.
sem_step p s1 l1 s2 (∀l2 s3. ¬sem_step p s2 l2 s3)
(l1 = Error s2 = s1 with status := Stuck ∀l2 s3. ¬step p s1 l2 s3)
(∃i e. l1 = Exit i s2 = s1 with status := Complete i
get_instr p s1.ip (Inl (Exit e)))
Proof
rw [sem_step_stuck] >>
fs [sem_step_cases] >>
disj2_tac >> fs [step_cases] >> rfs [inc_pc_def] >>
fs [step_instr_cases] >> rfs [update_result_def, inc_pc_def] >>
metis_tac []
QED
Theorem sem_step_not_last:
∀p s1 l1 s2.
sem_step p s1 l1 s2 ¬last_step p s1 l1 s2
∃l2 s3. sem_step p s2 l2 s3
Proof
rw [] >> CCONTR_TAC >> fs [] >> drule sem_step_then_stuck >>
simp [] >>
CCONTR_TAC >> fs [] >> rw []
>- fs [last_step_cases] >>
fs [last_step_cases, sem_step_cases] >> rw [] >>
first_x_assum (qspec_then `Inl (Exit e)` mp_tac) >>
rw [terminator_def]
QED
Triviality some_lemma:
∀P a b. (some (x, y). P x y) = Some (a, b) P a b
Proof
rw [optionTheory.some_def] >>
qmatch_assum_abbrev_tac `(@x. Q x) = _` >>
`Q (@x. Q x)` suffices_by (rw [Abbr `Q`]) >>
`?x. Q x` suffices_by rw [SELECT_THM] >>
unabbrev_all_tac >> rw [] >>
pairarg_tac >> fs [] >> rw [EXISTS_PROD] >>
metis_tac []
QED
Theorem extend_step_path:
∀path.
okpath (sem_step p) path finite path
(∀s. path = stopped_at s ∃s' l. sem_step p s l s')
∃path' l s n.
finite path' okpath (sem_step p) path' (last path').status = Partial
last_step p (last path') l s
length path = Some (Suc n) n PL (pconcat path' l (stopped_at s))
path = take n (pconcat path' l (stopped_at s))
Proof
rw [] >>
Cases_on `get_next_step p (last path) = None ∀s. path stopped_at s`
>- (
fs [get_next_step_def, optionTheory.some_def, FORALL_PROD, METIS_PROVE [] ``~x y (x y)``] >>
Cases_on `∃l2 s2. sem_step p (last path) l2 s2` >> fs []
>- ( (* Can take a last step from the end of the path *)
first_x_assum drule >> rw [] >>
qexists_tac `path` >> qexists_tac `l2` >> qexists_tac `s2` >> rw [] >>
fs [finite_length] >>
qexists_tac `n - 1` >>
`n 0` by metis_tac [length_never_zero] >>
rw [PL_def] >>
`length (pconcat path l2 (stopped_at s2)) = Some (n + 1)`
by metis_tac [length_pconcat, alt_length_thm] >>
rw [take_pconcat]
>- fs [sem_step_cases]
>- metis_tac [take_all] >>
fs [PL_def] >> rfs [])
>- ( (* The path is stuck, so we need to extract the last step from it *)
drule finite_path_end_cases >>
rw [] >> fs [] >> rfs [] >>
qexists_tac `p'` >> rw [] >>
qexists_tac `l` >> qexists_tac `s` >> rw [] >>
fs [finite_length] >>
qexists_tac `n` >> rw [] >>
`length (plink p' (pcons (last p') l (stopped_at s))) = Some (n + Suc 1 - 1)`
by metis_tac [length_plink, alt_length_thm, optionTheory.OPTION_MAP_DEF] >>
rw []
>- fs [sem_step_cases]
>- metis_tac [sem_step_not_last]
>- (
rw [PL_def] >> fs [finite_length] >>
`length (pconcat p' l (stopped_at s)) = Some (n + 1)`
by metis_tac [length_pconcat, alt_length_thm] >>
fs [])
>- (
rw [take_pconcat]
>- (fs [PL_def, finite_length] >> rfs []) >>
metis_tac [finite_length, pconcat_to_plink_finite]))) >>
qexists_tac `plink path (unfold I (get_next_step p) (last path))` >> rw [] >>
qmatch_goalsub_abbrev_tac `finite path1` >>
`∃m. length path = Some (Suc m)`
by (fs [finite_length] >> Cases_on `n` >> fs [length_never_zero]) >>
simp [GSYM PULL_EXISTS] >>
conj_asm1_tac
>- (
simp [Abbr `path1`] >> irule unfold_finite >>
WF_REL_TAC `measure (instrs_left p)` >>
rpt gen_tac >>
rw [instrs_left_def, get_next_step_def] >>
qabbrev_tac `P = (\s3 l. sem_step p s2 l s3 ¬last_step p s2 l s3)` >>
`P s3 l` by (irule some_lemma >> simp [Abbr `P`]) >>
pop_assum mp_tac >> simp [Abbr `P`] >> strip_tac >>
drule sem_step_not_last >> simp [] >> strip_tac >>
qpat_x_assum `sem_step p s2 l s3` mp_tac >> rw [Once sem_step_cases]
>- (
`?i. get_instr p s2.ip i` by metis_tac [get_instr_cases, step_cases] >>
`?x. i = Inl x` by (fs [last_step_cases] >> metis_tac [sumTheory.sum_CASES]) >>
drule step_same_block >> disch_then drule >> simp [] >>
impl_tac
>- (fs [last_step_cases] >> metis_tac []) >>
fs [step_cases, get_instr_cases, inc_bip_def] >> rw [] >> fs [] >>
rw [inc_bip_def] >> fs [])
>- fs [last_step_cases]) >>
`last path = first path1`
by (
unabbrev_all_tac >> simp [Once unfold_thm] >>
CASE_TAC >> rw [] >> split_pair_case_tac >> rw []) >>
simp [last_plink] >>
conj_asm1_tac
>- (
unabbrev_all_tac >>
irule okpath_unfold >> rw [] >>
qexists_tac `\x.T` >> rw [get_next_step_def] >>
qabbrev_tac `P = (\s2 l. sem_step p s l s2 ¬last_step p s l s2)` >>
`P s' l` by (irule some_lemma >> simp [Abbr `P`]) >>
pop_assum mp_tac >> simp [Abbr `P`]) >>
`?n. length path1 = Some n` by fs [finite_length] >>
`n 0` by metis_tac [length_never_zero] >>
`length (plink path path1) = Some (Suc m + n - 1)` by metis_tac [length_plink] >>
simp [take_pconcat, PL_def, finite_pconcat, length_plink] >>
`!l s. length (pconcat (plink path path1) l (stopped_at s)) = Some ((Suc m + n 1) + 1)`
by metis_tac [length_pconcat, alt_length_thm] >>
simp [GSYM PULL_EXISTS] >>
unabbrev_all_tac >> drule unfold_last >>
qmatch_goalsub_abbrev_tac `last_step _ (last path1) _ _` >>
simp [Once get_next_step_def, optionTheory.some_def, FORALL_PROD] >>
strip_tac >>
simp [CONJ_ASSOC, Once CONJ_SYM] >>
simp [GSYM CONJ_ASSOC] >>
conj_tac
>- (
rw [take_plink]
>- (imp_res_tac take_all >> fs []) >>
metis_tac [finite_plink_trivial]) >>
pop_assum mp_tac >>
Cases_on `1 PL path1` >> simp []
>- (
simp [get_next_step_def] >> strip_tac >>
qabbrev_tac `P = (\s2 l. sem_step p x l s2 ¬last_step p x l s2)` >>
`P (last path1) l` by (irule some_lemma >> simp [Abbr `P`]) >>
pop_assum mp_tac >> simp [Abbr `P`] >>
strip_tac >>
drule sem_step_not_last >> rw []
>- fs [sem_step_cases] >>
metis_tac [])
>- (
`n = 1` by (rfs [PL_def, finite_length] >> decide_tac) >>
qspec_then `path1` strip_assume_tac path_cases
>- (
unabbrev_all_tac >> simp [] >>
fs [] >> fs [Once unfold_thm] >>
Cases_on `get_next_step p (last path)` >> simp [] >> fs [] >> rw [] >>
fs [get_next_step_def, optionTheory.some_def, FORALL_PROD] >>
TRY split_pair_case_tac >> fs [sem_step_cases] >>
metis_tac [])
>- fs [alt_length_thm, length_never_zero])
QED
Theorem find_path_prefix:
∀path.
okpath (sem_step p) path finite path
!obs l1. toList (labels path) = Some l1
obs observation_prefixes ((last path).status, l1)
∃n l2. n PL path toList (labels (take n path)) = Some l2
obs = ((last (take n path)).status, filter ($ Tau) l2)
Proof
ho_match_mp_tac finite_okpath_ind >> rw [toList_THM]
>- fs [observation_prefixes_cases, IN_DEF] >>
`?s ls. obs = (s, ls)` by metis_tac [pairTheory.pair_CASES] >>
fs [] >>
`∃l. length path = Some l l 0` by metis_tac [finite_length, length_never_zero] >>
`take (l-1) path = path` by metis_tac [take_all] >>
Cases_on `s` >> fs []
>- (
qexists_tac `l` >> rw [toList_THM] >>
Cases_on `l` >> fs [toList_THM] >>
fs [observation_prefixes_cases, IN_DEF, PL_def])
>- (
qexists_tac `l` >> rw [toList_THM] >>
Cases_on `l` >> fs [toList_THM] >>
fs [observation_prefixes_cases, IN_DEF, PL_def]) >>
qpat_x_assum `(Partial, _) _` mp_tac >>
simp [observation_prefixes_cases, Once IN_DEF] >> rw [] >>
rename1 `short_l first_l::long_l` >>
Cases_on `short_l` >> fs []
>- (
qexists_tac `0` >> rw [toList_THM] >>
fs [sem_step_cases]) >>
rename1 `short_l long_l` >>
rfs [] >>
`(Partial, filter ($ Tau) short_l) observation_prefixes ((last path).status,long_l)`
by (simp [observation_prefixes_cases, IN_DEF] >> metis_tac []) >>
first_x_assum drule >> strip_tac >>
qexists_tac `Suc n` >> simp [toList_THM] >> rw [] >> rfs [last_take]
QED
Triviality is_prefix_lem:
∀l1 l2 l3. l1 l2 l1 l2 ++ l3
Proof
Induct >> rw [] >> fs [] >>
Cases_on `l2` >> fs []
QED
Theorem big_sem_equiv:
∀p s1. multi_step_sem p s1 = sem p s1
Proof
rw [multi_step_sem_def, sem_def, EXTENSION] >> eq_tac >> rw []
>- (
drule expand_multi_step_path >> rw [] >>
rename [`toList (labels m_path) = Some m_l`, `toList (labels s_path) = Some (flat m_l)`] >>
`?n short_l.
n PL s_path
toList (labels (take n s_path)) = Some short_l
x = ((last (take n s_path)).status, filter ($ Tau) short_l)`
by metis_tac [find_path_prefix] >>
qexists_tac `take n s_path` >> rw [])
>- (
Cases_on `¬∀s. path = stopped_at s ∃s' l. sem_step p s l s'`
>- (
fs [] >> rw [] >> fs [toList_THM] >> rw [] >>
qexists_tac `stopped_at s` >> rw [toList_THM] >>
rw [observation_prefixes_cases, IN_DEF] >>
metis_tac [trace_type_nchotomy]) >>
drule extend_step_path >> disch_then drule >>
impl_tac >> rw []
>- metis_tac [] >>
rename1 `last_step _ (last s_ext_path) last_l last_s` >>
`?s_ext_l. toList (labels s_ext_path) = Some s_ext_l` by metis_tac [LFINITE_toList, finite_labels] >>
qabbrev_tac `orig_path = take n (pconcat s_ext_path last_l (stopped_at last_s))` >>
drule contract_step_path >> simp [] >> disch_then drule >> rw [] >>
rename [`toList (labels m_path) = Some m_l`,
`toList (labels s_ext_path) = Some s_ext_l`,
`first m_path = first s_ext_path`,
`okpath (multi_step _) m_path`] >>
qexists_tac `m_path` >> rw [] >>
TRY (rw [Abbr `orig_path`] >> NO_TAC) >>
rfs [last_take, take_pconcat] >>
Cases_on `length s_ext_path = Some n`
>- (
rfs [PL_def] >> fs [] >>
rw [observation_prefixes_cases, IN_DEF] >> rw [] >>
unabbrev_all_tac >> rw [last_pconcat] >> fs [] >>
drule toList_LAPPEND_APPEND >> rw [toList_THM] >>
Cases_on `(last m_path).status` >> simp [] >>
qexists_tac `s_ext_l ++ [last_l]` >> rw []) >>
fs [PL_def, finite_pconcat] >> rfs [] >>
`?m. length s_ext_path = Some m` by metis_tac [finite_length] >>
`length s_ext_path = Some m` by metis_tac [finite_length] >>
`length (pconcat s_ext_path last_l (stopped_at (last m_path))) = Some (m + 1)`
by metis_tac [length_pconcat, alt_length_thm] >>
fs [] >>
`n < m` by decide_tac >> fs [] >> rw [] >>
`n PL s_ext_path` by rw [PL_def] >>
Cases_on `(last orig_path).status = Partial`
>- (
rw [observation_prefixes_cases, IN_DEF] >> rw [] >>
unabbrev_all_tac >> fs [] >>
`LTAKE n (labels s_ext_path) = Some l` by metis_tac [LTAKE_labels] >>
fs [toList_some] >> rfs [] >>
Cases_on `m` >> fs [length_labels] >>
qexists_tac `l` >> rw [] >> rfs []
>- (
irule is_prefix_lem >>
`n length s_ext_l` by decide_tac >>
fs [ltake_fromList2] >>
rw [take_is_prefix])
>- (drule LTAKE_LENGTH >> rw [])) >>
unabbrev_all_tac >> rfs [last_take] >>
fs [okpath_pointwise] >>
Cases_on `Suc n PL s_ext_path` >> rw []
>- (last_x_assum (qspec_then `n` mp_tac) >> rw [sem_step_cases]) >>
`n = m - 1` by (fs [PL_def] >> rfs []) >>
rw [] >>
`el (m - 1) s_ext_path = last s_ext_path` by metis_tac [take_all, pathTheory.last_take] >>
fs [last_step_cases])
QED
export_theory ();