You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1028 lines
29 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Misc. theorems that aren't specific to the semantics of LLVM or Sledge. These
* could be upstreamed to HOL, and should eventually. *)
open HolKernel boolLib bossLib Parse;
open listTheory rich_listTheory arithmeticTheory integerTheory llistTheory pathTheory;
open integer_wordTheory wordsTheory pred_setTheory alistTheory;
open finite_mapTheory open logrootTheory numposrepTheory set_relationTheory;
open sortingTheory;
open settingsTheory;
new_theory "misc";
numLib.prefer_num ();
(* Labels for the transitions to make externally observable behaviours apparent.
* For now, we'll consider this to be writes to global variables.
* *)
Datatype:
obs =
| Tau
| W 'a (word8 list)
| Exit int
| Error
End
Datatype:
trace_type =
| Stuck
| Complete int
| Partial
End
Inductive observation_prefixes:
(∀l i. observation_prefixes (Complete i, l) (Complete i, filter ($ Tau) l))
(∀l. observation_prefixes (Stuck, l) (Stuck, filter ($ Tau) l))
(∀l1 l2 x.
l2 l1 (l2 = l1 x = Partial)
observation_prefixes (x, l1) (Partial, filter ($ Tau) l2))
End
Definition take_prop_def:
(take_prop P n [] = [])
(take_prop P n (x::xs) =
if n = 0 then
[]
else if P x then
x :: take_prop P (n - 1) xs
else
x :: take_prop P n xs)
End
Theorem filter_take_prop[simp]:
∀P n l. filter P (take_prop P n l) = take n (filter P l)
Proof
Induct_on `l` >> rw [take_prop_def]
QED
Theorem take_prop_prefix[simp]:
∀P n l. take_prop P n l l
Proof
Induct_on `l` >> rw [take_prop_def]
QED
(*
Theorem take_prop_eq:
∀P n l. take_prop P n l = l l [] n length (filter P l) P (last l)
Proof
Induct_on `l` >> simp_tac (srw_ss()) [take_prop_def] >> rpt gen_tac >>
Cases_on `n = 0` >> pop_assum mp_tac >> simp_tac (srw_ss()) [] >>
Cases_on `P h` >> pop_assum mp_tac >> simp_tac (srw_ss()) [] >>
strip_tac >> strip_tac >>
Cases_on `l` >> pop_assum mp_tac >> simp_tac (srw_ss()) []
>- metis_tac [take_prop_def] >>
ntac 2 strip_tac >> first_x_assum drule >>
simp []
QED
*)
Theorem take_prop_eq:
∀P n l. take_prop P n l = l length (filter P l) n
Proof
Induct_on `l` >> simp_tac (srw_ss()) [take_prop_def] >> rpt gen_tac >>
Cases_on `n = 0` >> pop_assum mp_tac >> simp_tac (srw_ss()) [] >>
Cases_on `P h` >> pop_assum mp_tac >> simp_tac (srw_ss()) [] >>
strip_tac >> strip_tac >>
Cases_on `l` >> pop_assum mp_tac >> simp_tac (srw_ss()) [] >>
ntac 2 strip_tac >> first_x_assum drule >> simp []
QED
(* ----- Theorems about list library functions ----- *)
Theorem dropWhile_map:
∀P f l. dropWhile P (map f l) = map f (dropWhile (P o f) l)
Proof
Induct_on `l` >> rw []
QED
Theorem dropWhile_prop:
∀P l x. x < length l - length (dropWhile P l) P (el x l)
Proof
Induct_on `l` >> rw [] >>
Cases_on `x` >> fs []
QED
Theorem dropWhile_rev_take:
∀P n l x.
let len = length (dropWhile P (reverse (take n l))) in
x + len < n n length l P (el (x + len) l)
Proof
rw [] >>
`P (el ((n - 1 - x - length (dropWhile P (reverse (take n l))))) (reverse (take n l)))`
by (irule dropWhile_prop >> simp [LENGTH_REVERSE]) >>
rfs [EL_REVERSE, EL_TAKE, PRE_SUB1]
QED
Theorem take_replicate:
∀m n x. take m (replicate n x) = replicate (min m n) x
Proof
Induct_on `n` >> rw [TAKE_def, MIN_DEF] >> fs [] >>
Cases_on `m` >> rw []
QED
Theorem length_take_less_eq:
∀n l. length (take n l) n
Proof
Induct_on `l` >> rw [TAKE_def] >>
Cases_on `n` >> fs []
QED
Theorem flat_drop:
∀n m ls. flat (drop m ls) = drop (length (flat (take m ls))) (flat ls)
Proof
Induct_on `ls` >> rw [DROP_def, DROP_APPEND] >>
irule (GSYM DROP_LENGTH_TOO_LONG) >> simp []
QED
Theorem take_is_prefix:
∀n l. take n l l
Proof
Induct_on `l` >> rw [TAKE_def]
QED
Theorem sum_prefix:
∀l1 l2. l1 l2 sum l1 sum l2
Proof
Induct >> rw [] >> Cases_on `l2` >> fs []
QED
Theorem flookup_fdiff:
∀m s k.
flookup (fdiff m s) k =
if k s then None else flookup m k
Proof
rw [FDIFF_def, FLOOKUP_DRESTRICT] >> fs []
QED
Theorem inj_map_prefix_iff:
∀f l1 l2. INJ f (set l1 set l2) UNIV (map f l1 map f l2 l1 l2)
Proof
Induct_on `l1` >> rw [] >>
Cases_on `l2` >> rw [] >>
`INJ f (set l1 set t) UNIV`
by (
irule INJ_SUBSET >> qexists_tac `(h INSERT set l1) (set (h'::t))` >>
simp [SUBSET_DEF] >> fs [] >>
metis_tac []) >>
fs [INJ_IFF] >> metis_tac []
QED
Theorem is_prefix_subset:
∀l1 l2. l1 l2 set l1 set l2
Proof
Induct_on `l1` >> rw [] >>
Cases_on `l2` >> fs [SUBSET_DEF]
QED
Theorem mem_el_front:
∀n l. Suc n < length l mem (el n l) (front l)
Proof
Induct >> rw [] >> Cases_on `l` >> fs [FRONT_DEF] >> rw [] >> fs []
QED
Theorem last_take[simp]:
∀n l. n < length l last (take (Suc n) l) = el n l
Proof
Induct >> rw [] >> Cases_on `l` >> rw [] >> fs [LAST_DEF] >>
rw [] >> fs []
QED
Theorem filter_is_prefix:
∀l1 l2 P. l1 l2 filter P l1 filter P l2
Proof
Induct >> rw [] >> Cases_on `l2` >> fs []
QED
Theorem alookup_map_key:
∀al x f g.
(∀y z. f y = f z y = z)
alookup (map (\(k, v). (f k, g k v)) al) (f x) =
option_map (g x) (alookup al x)
Proof
Induct >> rw [] >> pairarg_tac >> rw [] >> metis_tac []
QED
Theorem map_is_some:
∀f l1. (∃l2. map f l1 = map Some l2) every IS_SOME (map f l1)
Proof
Induct_on `l1` >> rw [] >> eq_tac >> rw []
>- (Cases_on `l2` >> fs [])
>- (Cases_on `l2` >> fs [EVERY_MAP] >> metis_tac [])
>- (fs [optionTheory.IS_SOME_EXISTS] >> metis_tac [MAP])
QED
Theorem list_rel_flat:
∀r ls l. list_rel r (flat ls) l ∃ls2. list_rel (list_rel r) ls ls2 l = flat ls2
Proof
Induct_on `ls` >> rw [LIST_REL_SPLIT1] >> eq_tac >> rw [PULL_EXISTS] >>
metis_tac []
QED
Theorem alookup_some:
∀l k v.
alookup l k = Some v ∃l1 l2. l = l1 ++ [(k,v)] ++ l2 alookup l1 k = None
Proof
ho_match_mp_tac ALOOKUP_ind >> rw [] >> eq_tac >> rw []
>- (qexists_tac `[]` >> qexists_tac `l` >> rw [])
>- (Cases_on `l1` >> fs [] >> rw [] >> fs [])
>- (qexists_tac `(x,y)::l1` >> rw [])
>- (Cases_on `l1` >> fs [] >> rw [] >> rfs [] >> metis_tac [])
QED
Theorem reverse_eq_append:
∀l1 l2 l3. reverse l1 = l2 ++ l3 l1 = reverse l3 ++ reverse l2
Proof
rw [] >> eq_tac >> rw [] >>
`reverse (reverse l1) = reverse (l2 ++ l3)` by metis_tac [] >>
fs [] >>
metis_tac [REVERSE_REVERSE, REVERSE_APPEND]
QED
Theorem zip_eq_append:
∀l1 l2 l3 l4.
length l1 = length l2
(zip (l1,l2) = l3 ++ l4
∃l11 l12 l21 l22.
l1 = l11 ++ l12 l2 = l21 ++
l22 length l11 = length l3 length l21 = length l3
length l12 = length l4 length l22 = length l4
l3 = zip (l11, l21) l4 = zip (l12, l22))
Proof
Induct_on `l1` >> rw []
>- metis_tac [] >>
Cases_on `l2` >> fs [] >> Cases_on `l3` >> fs []
>- (eq_tac >> rw [] >> rw [] >> metis_tac [LENGTH_ZIP]) >>
eq_tac >> rw [] >> fs [] >> rw []
>- (
qexists_tac `h::l11` >> rw [] >>
metis_tac [APPEND, ZIP_def, LENGTH]) >>
Cases_on `l11` >> Cases_on `l21` >> fs [] >> rw [] >> rfs [] >>
metis_tac []
QED
Theorem append_split_last:
∀l1 l2 l3 l4 x.
l1 ++ [x] ++ l2 = l3 ++ [x] ++ l4 /\
¬mem x l2 ¬mem x l4
l1 = l3 l2 = l4
Proof
Induct_on `l1`
>- (rw [] >> Cases_on `l3` >> fs [] >> rfs []) >>
rpt gen_tac >>
Cases_on `l3`
>- (simp_tac (srw_ss()) [] >> CCONTR_TAC >> fs [] >> rw [] >> fs []) >>
simp_tac (srw_ss()) [] >> metis_tac []
QED
Theorem append_split_eq:
∀l1 l2 l3 l4 x y.
l1 ++ [x] ++ l2 = l3 ++ [y] ++ l4 /\
length l2 = length l4
l1 = l3 x = y l2 = l4
Proof
Induct_on `l1` >-
(rw [] >> Cases_on `l3` >> fs [] >> rw [] >> fs []) >>
rpt gen_tac >> Cases_on `l3`
>- (simp_tac (srw_ss()) [] >> CCONTR_TAC >> fs [] >> rw [] >> fs []) >>
simp_tac (srw_ss()) [] >> metis_tac []
QED
(* ----- Theorems about log ----- *)
Theorem mul_div_bound:
∀m n. n 0 m - (n - 1) n * (m DIV n) n * (m DIV n) m
Proof
rw [] >>
`0 < n` by decide_tac >>
drule DIVISION >> disch_then (qspec_then `m` mp_tac) >>
decide_tac
QED
Theorem exp_log_bound:
∀b n. 1 < b n 0 n DIV b + 1 b ** (log b n) b ** (log b n) n
Proof
rw [] >> `0 < n` by decide_tac >>
drule LOG >> disch_then drule >> rw [] >>
fs [ADD1, EXP_ADD] >>
simp [DECIDE ``∀x y. x + 1 y x < y``] >>
`∃x. b = Suc x` by intLib.COOPER_TAC >>
`b * (n DIV b) < b * b ** log b n` suffices_by metis_tac [LESS_MULT_MONO] >>
pop_assum kall_tac >>
`b 0` by decide_tac >>
drule mul_div_bound >> disch_then (qspec_then `n` mp_tac) >>
decide_tac
QED
Theorem log_base_power:
∀n b. 1 < b log b (b ** n) = n
Proof
Induct >> rw [EXP, LOG_1] >>
Cases_on `n` >> rw [LOG_BASE] >>
first_x_assum drule >> rw [] >>
simp [Once EXP, LOG_MULT]
QED
Theorem log_change_base_power:
∀m n b. 1 < b m 0 n 0 log (b ** n) m = log b m DIV n
Proof
rw [] >> irule LOG_UNIQUE >>
rw [ADD1, EXP_MUL, LEFT_ADD_DISTRIB] >>
qmatch_goalsub_abbrev_tac `x DIV _` >>
drule mul_div_bound >> disch_then (qspec_then `x` mp_tac) >> rw []
>- (
irule LESS_LESS_EQ_TRANS >>
qexists_tac `b ** (x+1)` >> rw [] >>
unabbrev_all_tac >>
simp [EXP_ADD] >>
`b * (m DIV b + 1) b * b ** log b m`
by metis_tac [exp_log_bound, LESS_MONO_MULT, MULT_COMM] >>
`m < b * (m DIV b + 1)` suffices_by decide_tac >>
simp [LEFT_ADD_DISTRIB] >>
`b 0` by decide_tac >>
`m - (b - 1) b * (m DIV b)` by metis_tac [mul_div_bound] >>
fs [])
>- (
irule LESS_EQ_TRANS >>
qexists_tac `b ** (log b m)` >> rw [] >>
unabbrev_all_tac >>
metis_tac [exp_log_bound])
QED
(* ----- Theorems about word stuff ----- *)
Theorem l2n_padding:
∀ws n. l2n 256 (ws ++ map w2n (replicate n 0w)) = l2n 256 ws
Proof
Induct >> rw [l2n_def] >> fs [map_replicate] >>
Induct_on `n` >> rw [l2n_def]
QED
Theorem l2n_0:
∀l b. b 0 every ($> b) l (l2n b l = 0 every ($= 0) l)
Proof
Induct >> rw [l2n_def] >>
eq_tac >> rw []
QED
Theorem mod_n2l:
∀d n. 0 < d map (λx. x MOD d) (n2l d n) = n2l d n
Proof
rw [] >> drule n2l_BOUND >> disch_then (qspec_then `n` mp_tac) >>
qspec_tac (`n2l d n`, `l`) >>
Induct >> rw []
QED
5 years ago
Definition truncate_2comp_def:
truncate_2comp (i:int) size =
(i + 2 ** (size - 1)) % 2 ** size - 2 ** (size - 1)
End
Theorem truncate_2comp_i2w_w2i:
∀i size. dimindex (:'a) = size truncate_2comp i size = w2i (i2w i : 'a word)
Proof
rw [truncate_2comp_def, w2i_def, word_msb_i2w, w2n_i2w] >>
qmatch_goalsub_abbrev_tac `(_ + s1) % s2` >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP, DIMINDEX_GT_0] >>
`0 s2 ¬(s2 < 0)` by rw [Abbr `s2`] >>
fs [MULT_MINUS_ONE, w2n_i2w] >>
fs [GSYM dimword_def, dimword_IS_TWICE_INT_MIN]
>- (
`-i % s2 = -((i + s1) % s2 - s1)` suffices_by intLib.COOPER_TAC >>
simp [] >>
irule INT_MOD_UNIQUE >>
simp [GSYM PULL_EXISTS] >>
conj_tac
>- (
simp [int_mod, INT_ADD_ASSOC,
intLib.COOPER_PROVE ``∀x y (z:int). x - (y + z - a) = x - y - z + a``] >>
5 years ago
qexists_tac `-((i + s1) / s2)` >>
intLib.COOPER_TAC) >>
`&INT_MIN (:α) = s1` by (unabbrev_all_tac >> rw [INT_MIN_def]) >>
fs [INT_SUB_LE] >>
`0 (i + s1) % s2` by metis_tac [INT_MOD_BOUNDS] >>
strip_tac
>- (
`(i + s1) % s2 = (i % s2 + s1 % s2) % s2`
by (irule (GSYM INT_MOD_PLUS) >> rw []) >>
simp [] >>
`(i % s2 + s1 % s2) % s2 = (-1 * s2 + (i % s2 + s1 % s2)) % s2`
by (metis_tac [INT_MOD_ADD_MULTIPLES]) >>
simp [GSYM INT_NEG_MINUS1, INT_ADD_ASSOC] >>
`i % s2 < s2 s1 % s2 < s2 i % s2 s2` by metis_tac [INT_MOD_BOUNDS, INT_LT_IMP_LE] >>
`0 s1 s1 < s2 -s2 + i % s2 + s1 % s2 < s2` by intLib.COOPER_TAC >>
`0 -s2 + i % s2 + s1 % s2`
by (
`s2 = s1 + s1` by intLib.COOPER_TAC >>
fs [INT_LESS_MOD] >>
intLib.COOPER_TAC) >>
simp [INT_LESS_MOD] >>
intLib.COOPER_TAC)
>- intLib.COOPER_TAC)
>- (
`(i + s1) % s2 = i % s2 + s1` suffices_by intLib.COOPER_TAC >>
`(i + s1) % s2 = i % s2 + s1 % s2`
suffices_by (
rw [] >>
irule INT_LESS_MOD >> rw [] >>
intLib.COOPER_TAC) >>
`(i + s1) % s2 = (i % s2 + s1 % s2) % s2`
suffices_by (
fs [Abbr `s2`] >>
`s1 = &INT_MIN (:'a)` by intLib.COOPER_TAC >> rw [] >>
irule INT_LESS_MOD >> rw [] >>
fs [intLib.COOPER_PROVE ``∀(x:int) y. ¬(x y) y < x``] >> rw [] >>
5 years ago
full_simp_tac std_ss [GSYM INT_MUL] >>
qpat_abbrev_tac `s = &INT_MIN (:α)`
>- (
`2*s 0 ¬(2*s < 0) ¬(s < 0)`
by (unabbrev_all_tac >> rw []) >>
drule INT_MOD_BOUNDS >> simp [] >>
disch_then (qspec_then `i` mp_tac) >> simp [] >>
intLib.COOPER_TAC)
>- intLib.COOPER_TAC) >>
simp [INT_MOD_PLUS])
QED
(* The integer, interpreted as 2's complement, fits in the given number of bits *)
Definition ifits_def:
ifits (i:int) size
0 < size -(2 ** (size - 1)) i i < 2 ** (size - 1)
End
Theorem ifits_w2i:
∀(w : 'a word). ifits (w2i w) (dimindex (:'a))
Proof
rw [ifits_def, GSYM INT_MIN_def] >>
metis_tac [INT_MIN, w2i_ge, integer_wordTheory.INT_MAX_def, w2i_le,
intLib.COOPER_PROVE ``!(x:int) y. x y - 1 x < y``]
QED
Theorem truncate_2comp_fits:
∀i size. 0 < size ifits (truncate_2comp i size) size
Proof
rw [truncate_2comp_def, ifits_def] >>
qmatch_goalsub_abbrev_tac `(i + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`]
>- (
`0 (i + s1) % s2` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [])
>- (
`(i + s1) % s2 < 2 * s1` suffices_by intLib.COOPER_TAC >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
drule INT_MOD_BOUNDS >>
rw [Abbr `s1`, Abbr `s2`])
QED
Theorem ifits_mono:
∀i s1 s2. s1 s2 ifits i s1 ifits i s2
Proof
rw [ifits_def]
>- (
`&(2 ** (s1 1)) &(2 ** (s2 1))` suffices_by intLib.COOPER_TAC >>
rw [])
>- (
`&(2 ** (s1 1)) &(2 ** (s2 1))` suffices_by intLib.COOPER_TAC >>
rw [])
QED
Theorem fits_ident:
∀i size. 0 < size (ifits i size truncate_2comp i size = i)
Proof
rw [ifits_def, truncate_2comp_def] >>
rw [intLib.COOPER_PROVE ``!(x:int) y z. x - y = z <=> x = y + z``] >>
qmatch_goalsub_abbrev_tac `(_ + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`] >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
eq_tac >>
rw []
>- (
simp [Once INT_ADD_COMM] >>
irule INT_LESS_MOD >>
rw [] >>
intLib.COOPER_TAC)
>- (
`0 (i + s1) % (2 * s1)` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
>- (
`(i + s1) % (2 * s1) < 2 * s1` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
QED
Theorem i2w_w2i_extend:
i2w (w2i (w : 'a word)) : 'b word =
if ¬word_msb w then
w2w w
else
-w2w (-w)
Proof
rw [i2w_def, w2i_def] >>
BasicProvers.FULL_CASE_TAC >> fs [] >>
fs [] >>
full_simp_tac std_ss [GSYM WORD_NEG_MUL] >>
full_simp_tac std_ss [w2w_def]
QED
Theorem w21_sw2sw_extend:
dimindex (:'b) dimindex (:'a)
w2i (sw2sw (w :'b word) :'a word) = w2i (w : 'b word)
Proof
rw [] >>
`∃j. INT_MIN (:'b) j j INT_MAX (:'b) w = i2w j` by metis_tac [ranged_int_word_nchotomy] >>
rw [sw2sw_i2w] >>
`INT_MIN (:'a) j j INT_MAX (:'a)`
by (
fs [INT_MIN_def, INT_MAX_def] >>
`2 ** (dimindex (:'b) - 1) 2 ** (dimindex (:'a) - 1)`
by rw [EXP_BASE_LE_IFF] >>
qmatch_assum_abbrev_tac `b a` >>
rw []
>- intLib.COOPER_TAC >>
`&(b - 1) &(a - 1)` by intLib.COOPER_TAC >>
full_simp_tac bool_ss [GSYM INT_LE] >>
intLib.COOPER_TAC) >>
rw [w2i_i2w]
QED
Theorem sw2sw_trunc:
dimindex (:'a) dimindex (:'b)
(sw2sw (w :'b word) :'a word) = (w2w (w :'b word) :'a word)
Proof
rw [sw2sw_def, w2w_def, bitTheory.SIGN_EXTEND_def] >>
fs [dimword_def] >>
qmatch_assum_abbrev_tac `a b` >>
`2 ** a 2 ** b` by rw [EXP_BASE_LE_IFF] >>
`2 ** a - 2 ** b = 0` by rw [] >>
rw [] >>
`∃x. b = a + x` by (qexists_tac `b - a` >> decide_tac) >>
rw [EXP_ADD] >>
metis_tac [MOD_MULT_MOD, bitTheory.ZERO_LT_TWOEXP]
QED
Theorem w2i_w2w_expand:
dimindex (:'a) < dimindex (:'b) w2i (w2w (w : 'a word) : 'b word) = &w2n w
Proof
rw [w2i_def, w2n_w2w, word_msb, word_bit_thm, w2w]
QED
(* ----- Theorems about lazy lists ----- *)
Theorem toList_some:
∀ll l. toList ll = Some l ll = fromList l
Proof
Induct_on `l` >> rw [] >>
Cases_on `ll` >> rw [toList_THM] >>
metis_tac []
QED
Theorem lmap_fromList:
!f l. LMAP f (fromList l) = fromList (map f l)
Proof
Induct_on `l` >> rw []
QED
Theorem fromList_11[simp]:
!l1 l2. fromList l1 = fromList l2 l1 = l2
Proof
Induct >> rw [] >>
Cases_on `l2` >> fs []
QED
(* ----- Theorems about labelled transition system paths ----- *)
Theorem take_all:
∀p n. length p = Some n take (n - 1) p = p
Proof
Induct_on `n` >> rw []
>- metis_tac [length_never_zero] >>
qspec_then `p` mp_tac path_cases >> rw [] >> fs [alt_length_thm] >>
first_x_assum drule >> rw [] >>
Cases_on `n` >> fs [length_never_zero]
QED
Theorem el_plink:
∀n p1 p2.
n PL (plink p1 p2) last p1 = first p2
el n (plink p1 p2) = (if n PL p1 then el n p1 else el (Suc n - THE (length p1)) p2)
Proof
Induct_on `n` >> rw [first_plink] >>
qspec_then `p1` mp_tac path_cases >> rw [] >> fs [] >>
rw [alt_length_thm] >>
first_x_assum drule >> rw [] >>
Cases_on `length q` >> fs [PL_def, length_def]
QED
Theorem el_pcons:
∀n x l p. el n (pcons x l p) = if n = 0 then x else el (n - 1) p
Proof
Induct_on `n` >>
rw []
QED
Theorem first_pconcat[simp]:
∀p1 l p2. first (pconcat p1 l p2) = first p1
Proof
rw [] >> qspec_then `p1` mp_tac path_cases >> rw [] >> rw [pconcat_thm]
QED
Theorem el_pconcat:
∀n p1 l p2.
n PL (pconcat p1 l p2)
el n (pconcat p1 l p2) = (if n PL p1 then el n p1 else el (n - THE (length p1)) p2)
Proof
Induct_on `n` >> rw [] >>
qspec_then `p1` mp_tac path_cases >> rw [] >> fs [pconcat_thm] >>
rw [alt_length_thm] >>
first_x_assum drule >> rw [] >>
Cases_on `length q` >> fs [PL_def, length_def]
QED
Theorem labels_pconcat[simp]:
∀p1 l p2. labels (pconcat p1 l p2) = LAPPEND (labels p1) (l:::labels p2)
Proof
rw [pconcat_def, labels_LMAP, path_rep_bijections_thm, LMAP_APPEND]
QED
Theorem length_pconcat:
∀p1 l p2 l1 l2.
length p1 = Some l1 length p2 = Some l2
length (pconcat p1 l p2) = Some (l1 + l2)
Proof
rw [pconcat_def, length_def, path_rep_bijections_thm, finite_def,
LFINITE_APPEND] >>
rw [] >>
`LFINITE (LAPPEND (snd (fromPath p1)) ((l,first p2):::snd (fromPath p2)))`
by rw [LFINITE_APPEND] >>
imp_res_tac LFINITE_toList >> rw [] >>
imp_res_tac toList_LAPPEND_APPEND >> fs [toList_THM]
QED
Theorem take_pconcat:
∀n p1 l p2.
take n (pconcat p1 l p2) =
if n PL p1 then
take n p1
else
pconcat p1 l (take (n - THE (length p1)) p2)
Proof
Induct_on `n` >> rw []
>- (
fs [PL_def] >>
qspec_then `p1` mp_tac path_cases >> rw [] >> rw [pconcat_thm] >>
fs [finite_def, alt_length_thm])
>- (
qspec_then `p1` mp_tac path_cases >> rw [] >> rw [pconcat_thm] >>
fs [PL_def])
>- (
qspec_then `p1` mp_tac path_cases >> rw [] >> rw [pconcat_thm] >>
fs [PL_def, alt_length_thm, finite_length])
QED
Theorem last_pconcat[simp]:
∀p1. finite p1 ∀l p2. last (pconcat p1 l p2) = last p2
Proof
ho_match_mp_tac finite_path_ind >>
rw [pconcat_thm]
QED
Theorem length_labels:
∀p n. length p = Some (Suc n) LLENGTH (labels p) = Some n
Proof
Induct_on `n` >> rw [] >>
qspec_then `p` mp_tac path_cases >> rw [] >> rw [alt_length_thm, length_never_zero]
QED
Theorem ltake_fromList2:
∀n l. n length l LTAKE n (fromList l) = Some (take n l)
Proof
Induct_on `l` >> rw [] >>
Cases_on `n` >> fs []
QED
Theorem el_take:
∀p m n. n PL p m n el m (take n p) = el m p
Proof
Induct_on `n` >> rw [] >> rw [el_pcons] >>
first_x_assum (qspecl_then [`tail p`, `m-1`] mp_tac) >>
impl_tac
>- (
fs [PL_def] >> rw [] >>
qspec_then `p` mp_tac path_cases >> rw [] >> fs [alt_length_thm] >>
fs [finite_length] >> fs []) >>
rw [] >>
Cases_on `m` >> rw []
QED
Theorem nth_label_pcons:
(∀n s l p. nth_label 0 (pcons s l p) = l)
(∀n s l p. nth_label (Suc n) (pcons s l p) = nth_label n p)
Proof
rw []
QED
Theorem okpath_pointwise_imp1:
∀p. (∀n. Suc n PL p r (el n p) (nth_label n p) (el (Suc n) p)) okpath r p
Proof
ho_match_mp_tac okpath_co_ind >> rw [] >>
qspec_then `p` mp_tac path_cases >> rw [] >> rw [first_thm] >>
fs [PL_def]
>- (first_x_assum (qspec_then `0` mp_tac) >> rw []) >>
rw [el_pcons]
>- (first_x_assum (qspec_then `1` mp_tac) >> rw [] >> fs [el_pcons, nth_label_compute])
>- (
first_x_assum (qspec_then `Suc n` mp_tac) >> rw [] >>
Cases_on `n` >> fs [])
QED
Theorem okpath_pointwise_imp2:
∀p. okpath r p finite p (∀n. Suc n PL p r (el n p) (nth_label n p) (el (Suc n) p))
Proof
ho_match_mp_tac finite_okpath_ind >> rw [] >>
Cases_on `n` >> fs []
QED
Theorem okpath_pointwise:
∀r p. okpath r p (∀n. Suc n PL p r (el n p) (nth_label n p) (el (Suc n) p))
Proof
rw [] >> eq_tac >> rw [okpath_pointwise_imp1] >>
`okpath r (take (Suc n) p)` by metis_tac [okpath_take] >>
`finite (take (Suc n) p)` by metis_tac [finite_take] >>
drule okpath_pointwise_imp2 >> simp [] >>
disch_then (qspec_then `n` mp_tac) >> simp [el_pcons] >>
Cases_on `n = 0` >> simp [] >>
`n PL (tail p)`
by (
fs [PL_def] >>
qspec_then `p` mp_tac path_cases >> rw [] >> rw [first_thm] >>
fs [alt_length_thm] >> fs [finite_length] >> fs []) >>
simp [el_take] >>
`el (n - 1) (tail p) = el n p` by (Cases_on `n` >> rw []) >>
simp [] >>
`∃m. n = Suc m` by intLib.COOPER_TAC >>
`Suc m PL (tail p)` by fs [PL_def] >>
ASM_REWRITE_TAC [nth_label_pcons] >>
simp [nth_label_take]
QED
Theorem length_plink:
∀p1 p2 l1 l2.
length p1 = Some l1 length p2 = Some l2
length (plink p1 p2) = Some (l1 + l2 - 1)
Proof
Induct_on `l1` >> rw [] >> fs [length_never_zero] >>
qspec_then `p1` mp_tac path_cases >> rw [plink_def] >>
fs [alt_length_thm] >> res_tac >> fs [ADD1] >>
`l1 0` by metis_tac [length_never_zero] >>
decide_tac
QED
Theorem take_plink:
∀n p1 p2.
take n (plink p1 p2) =
if Suc n PL p1 then
take n p1
else
plink p1 (take ((Suc n) - THE (length p1)) p2)
Proof
Induct_on `n` >> rw []
>- (
fs [PL_def] >>
qspec_then `p1` mp_tac path_cases >> rw [] >>
fs [finite_def, alt_length_thm])
>- (
fs [PL_def] >>
qspec_then `p1` mp_tac path_cases >> rw []>> rw [plink_def] >>
fs [finite_length, alt_length_thm] >> rfs [] >>
Cases_on `n` >> fs [length_never_zero])
>- (
qspec_then `p1` mp_tac path_cases >> rw []>> rw [plink_def] >>
fs [PL_def])
>- (
qspec_then `p1` mp_tac path_cases >> rw []>> rw [plink_def] >>
fs [PL_def])
>- (
qspec_then `p1` mp_tac path_cases >> rw [] >> rw [] >>
fs [PL_def, alt_length_thm])
>- (
qspec_then `p1` mp_tac path_cases >> rw [] >> fs [alt_length_thm] >>
`finite q` by fs [PL_def] >>
fs [finite_length])
QED
Theorem unfold_last_lem:
∀path. finite path
∀proj f s. path = unfold proj f s
∃y. proj y = last path f y = None (1 PL path ∃x l. f x = Some (y, l))
Proof
ho_match_mp_tac finite_path_ind >> rw []
>- (
fs [Once unfold_thm] >> Cases_on `f s` >> fs []
>- metis_tac [] >>
split_pair_case_tac >> fs []) >>
pop_assum mp_tac >> simp [Once unfold_thm] >> Cases_on `f s` >> simp [] >>
split_pair_case_tac >> rw [] >>
first_x_assum (qspecl_then [`proj`, `f`, `s'`] mp_tac) >> simp [] >>
Cases_on `1 PL (unfold proj f s')` >> rw [] >>
fs [PL_def] >>
fs [Once unfold_thm] >>
Cases_on `f s'` >> fs [alt_length_thm] >> rw [] >-
metis_tac [] >>
split_pair_case_tac >> fs [] >> rw [] >> fs [alt_length_thm, finite_length] >>
rfs [] >>
`n = 0 n = 1` by decide_tac >> fs [length_never_zero]
QED
Theorem unfold_last:
∀proj f s.
finite (unfold proj f s)
∃y. proj y = last (unfold proj f s) f y = None
(1 PL (unfold proj f s) ∃x l. f x = Some (y, l))
Proof
metis_tac [unfold_last_lem]
QED
Theorem pconcat_to_plink_finite:
∀p1. finite p1 ∀l p2. pconcat p1 l p2 = plink p1 (pcons (last p1) l p2)
Proof
ho_match_mp_tac finite_path_ind >> rw [pconcat_thm]
QED
Definition opt_funpow_def:
(opt_funpow f 0 x = Some x)
(opt_funpow f (Suc n) x = option_join (option_map f (opt_funpow f n x)))
End
Theorem opt_funpow_alt:
∀n f s.
opt_funpow f (Suc n) s = option_join (option_map (opt_funpow f n) (f s))
Proof
Induct_on `n` >> rw [] >> Cases_on `f s` >> rw [] >>
`1 = Suc 0` by decide_tac >>
ASM_REWRITE_TAC [] >>
rw [opt_funpow_def] >>
fs [opt_funpow_def]
QED
Theorem unfold_finite_funpow_lem:
∀f proj s x.
opt_funpow (option_map fst f) m s = Some x f x = None
finite (unfold proj f s)
Proof
Induct_on `m` >> rw [opt_funpow_def] >>
simp [Once unfold_thm] >>
CASE_TAC >> fs [] >> split_pair_case_tac >> fs [] >> rw [] >>
Cases_on `opt_funpow (option_map fst f) m s` >> rw [] >>
fs [optionTheory.OPTION_MAP_DEF] >>
first_x_assum irule >> qexists_tac `x` >> rw [] >>
`opt_funpow (option_map fst f) (Suc m) s = Some (fst z)` by fs [opt_funpow_def] >>
rfs [opt_funpow_alt]
QED
Theorem unfold_finite_funpow:
∀f proj s m.
opt_funpow (option_map fst f) m s = None
finite (unfold proj f s)
Proof
rw [] >> irule unfold_finite_funpow_lem >>
Induct_on `m` >> rw [] >> fs [opt_funpow_def] >>
Cases_on `opt_funpow (option_map fst f) m s` >> fs [] >>
metis_tac []
QED
Theorem unfold_finite:
∀proj f s.
(∃R. WF R ∀n s2 l s3. opt_funpow (option_map fst o f) n s = Some s2 f s2 = Some (s3, l) R s3 s2)
finite (unfold proj f s)
Proof
rw [] >> drule relationTheory.WF_INDUCTION_THM >>
disch_then (qspecl_then [`λx. ∀n. opt_funpow (option_map fst o f) n s = Some x
∃m. opt_funpow (option_map fst o f) m x = None`,
`s`] mp_tac) >>
simp [] >>
impl_tac
>- (
rw [] >>
first_x_assum drule >> Cases_on `f x` >> simp []
>- (qexists_tac `Suc n` >> simp [opt_funpow_alt]) >>
PairCases_on `x'` >> rw [] >>
first_x_assum drule >> rw [] >>
first_x_assum (qspec_then `Suc n` mp_tac) >> simp [opt_funpow_def] >>
rw [] >>
qexists_tac `Suc m` >> rw [opt_funpow_alt]) >>
metis_tac [unfold_finite_funpow, opt_funpow_def]
QED
(* ----- pred_set theorems ----- *)
Theorem drestrict_union_eq:
!m1 m2 s1 s2.
DRESTRICT m1 (s1 s2) = DRESTRICT m2 (s1 s2)
DRESTRICT m1 s1 = DRESTRICT m2 s1
DRESTRICT m1 s2 = DRESTRICT m2 s2
Proof
rw [DRESTRICT_EQ_DRESTRICT_SAME] >> eq_tac >> rw [] >> fs [EXTENSION] >>
metis_tac []
QED
Theorem union_diff:
!s1 s2 s3. s1 s2 DIFF s3 = (s1 DIFF s3) (s2 DIFF s3)
Proof
rw [EXTENSION] >> metis_tac []
QED
(* ----- finite map theorems ----- *)
Theorem drestrict_fupdate_list[simp]:
∀l m s. DRESTRICT (m |++ l) s = DRESTRICT m s |++ filter (\(x,y). x s) l
Proof
Induct_on `l` >> rw [FUPDATE_LIST_THM] >> pairarg_tac >> fs []
QED
Theorem fupdate_list_elim:
∀m l. (∀k v. mem (k,v) l flookup m k = Some v) m |++ l = m
Proof
Induct_on `l` >> rw [FUPDATE_LIST_THM] >>
rename1 `_ |+ kv |++ _ = _` >>
`m |+ kv = m` by (PairCases_on `kv` >> irule FUPDATE_ELIM >> fs [FLOOKUP_DEF]) >>
rw []
QED
(* ---- set_relation theorems ---- *)
Theorem finite_imp_finite_prefixes:
∀r s. finite s domain r s finite_prefixes r s
Proof
rw [finite_prefixes_def] >>
irule SUBSET_FINITE_I >> fs [SUBSET_DEF, domain_def] >> metis_tac []
QED
Theorem finite_linear_order_of_finite_po:
∀r s. finite s partial_order r s ∃r'. linear_order r' s r r'
Proof
rw [] >>
`countable s` by metis_tac [finite_countable] >>
`finite_prefixes r s` by metis_tac [finite_imp_finite_prefixes, partial_order_def] >>
metis_tac [linear_order_of_countable_po]
QED
Theorem finite_linear_order_to_list:
∀lo X. finite X linear_order lo X
∃l. X = set l SORTED (λx y. (x, y) lo y X) l all_distinct l
Proof
rw [] >>
qmatch_goalsub_abbrev_tac `SORTED R _` >>
qexists_tac `QSORT R (SET_TO_LIST X)` >> rw [SET_TO_LIST_INV]
>- rw [EXTENSION, QSORT_MEM]
>- (
irule QSORT_SORTED >>
rw [Abbr `R`, relationTheory.total_def]
>- (fs [linear_order_def] >> metis_tac []) >>
fs [linear_order_def, transitive_def, relationTheory.transitive_def,
domain_def, range_def, SUBSET_DEF] >>
rw [] >> metis_tac [])
>- metis_tac [ALL_DISTINCT_SET_TO_LIST, ALL_DISTINCT_PERM, QSORT_PERM]
QED
Definition rc_def:
rc R s = R {(x,x) | x s}
End
Theorem rc_is_reflexive:
∀R s. reflexive (rc R s) s
Proof
rw [rc_def, reflexive_def]
QED
Theorem transitive_rc:
∀R s. transitive R transitive (rc R s)
Proof
rw [rc_def, transitive_def] >> metis_tac []
QED
Theorem antisym_rc:
∀R s. antisym (rc R s) antisym R
Proof
rw [rc_def, antisym_def] >> metis_tac []
QED
export_theory ();