You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

833 lines
27 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Symbolic Execution *)
open Fol
[@@@warning "+9"]
module Fresh : sig
(** Monad to manage generation of fresh variables. A value of type ['a t]
is a value of type ['a] which may contain as-yet-unnamed variables. *)
include Monad.S
val gen : wrt:Var.Set.t -> 'a t -> Var.Set.t * 'a
(** [gen ~wrt a] generates names that are fresh with respect to [wrt] for
all unnamed variables in [a], and yields the set of generated
variables together with [a] expressed in terms of those variables. *)
val var : string -> Term.t t
(** Fresh variable whose name is based on the given string. *)
val seg :
?bas:Term.t
-> ?len:Term.t
-> ?siz:Term.t
-> ?cnt:Term.t
-> Term.t
-> Sh.seg t
(** Segment with fresh variables for omitted arguments. *)
val assign : ws:Var.Set.t -> rs:Var.Set.t -> (Var.Subst.t * Var.Set.t) t
(** Renaming of fresh ghosts for overwritten variables, and remaining
modified but not read variables, given written variables [ws] and read
(or appearing in the precondition) variables [rs]. *)
end = struct
type ctx = {wrt: Var.Set.t; xs: Var.Set.t}
include Monad.State (struct
type t = ctx
end)
open Import
let gen ~wrt m =
let a, {xs; wrt= _} = run m {wrt; xs= Var.Set.empty} in
(xs, a)
let var nam {wrt; xs} =
let x, wrt = Var.fresh nam ~wrt in
let xs = Var.Set.add x xs in
return (Term.var x) {wrt; xs}
let seg ?bas ?len ?siz ?cnt loc =
let freshen term nam =
match term with Some term -> return term | None -> var nam
in
let* bas = freshen bas "b" in
let* len = freshen len "m" in
let* siz = freshen siz "n" in
let* cnt = freshen cnt "a" in
return Sh.{loc; bas; len; siz; cnt}
let assign ~ws ~rs {wrt; xs} =
let ovs = Var.Set.inter ws rs in
let Var.Subst.{sub; dom; rng}, wrt = Var.Subst.freshen ovs ~wrt in
let ms = Var.Set.diff ws dom in
let xs = Var.Set.union xs rng in
return (sub, ms) {wrt; xs}
end
(** generic command: [{foot ∧ sub} ms := - {post}] *)
type spec = {foot: Sh.t; sub: Var.Subst.t; ms: Var.Set.t; post: Sh.t}
let gen_spec us specm =
let xs, spec = Fresh.gen ~wrt:us specm in
let us = Var.Set.union xs (Var.Set.union spec.foot.us spec.post.us) in
let foot = Sh.extend_us us spec.foot in
let post = Sh.extend_us us spec.post in
(xs, {spec with foot; post})
(*
* Instruction small axioms
*)
let null_eq ptr = Sh.pure (Formula.eq0 ptr)
let eq_concat (siz, cnt) ms =
Formula.eq
(Term.sized ~siz ~seq:cnt)
(Term.concat
(Array.map ~f:(fun (siz, cnt) -> Term.sized ~siz ~seq:cnt) ms))
open Fresh.Import
(* { emp }
* rs := es
* { * r=eΘ }
*)
let move_spec reg_exps =
let foot = Sh.emp in
let ws, rs =
IArray.fold reg_exps (Var.Set.empty, Var.Set.empty)
~f:(fun (reg, exp) (ws, rs) ->
(Var.Set.add reg ws, Var.Set.union rs (Term.fv exp)) )
in
let+ sub, ms = Fresh.assign ~ws ~rs in
let post =
IArray.fold reg_exps Sh.emp ~f:(fun (reg, exp) post ->
Sh.and_ (Formula.eq (Term.var reg) (Term.rename sub exp)) post )
in
{foot; sub; ms; post}
(* { p-[b;m)->⟨l,α⟩ }
* load l r p
* { r=αΘ * (p-[b;m)->l,α)Θ }
*)
let load_spec reg ptr len =
let* seg = Fresh.seg ptr ~siz:len in
let foot = Sh.seg seg in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let post =
Sh.and_
(Formula.eq (Term.var reg) (Term.rename sub seg.cnt))
(Sh.rename sub foot)
in
{foot; sub; ms; post}
(* { p-[b;m)->⟨l,α⟩ }
* store l p e
* { p-[b;m)->l,e }
*)
let store_spec ptr exp len =
let+ seg = Fresh.seg ptr ~siz:len in
let foot = Sh.seg seg in
let post = Sh.seg {seg with cnt= exp} in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ }
* memset l d b
* { d-[b;m)->l,b^ }
*)
let memset_spec dst byt len =
let+ seg = Fresh.seg dst ~siz:len in
let foot = Sh.seg seg in
let post = Sh.seg {seg with cnt= Term.splat byt} in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d=s * l=0 * d-[b;m)->⟨l,α⟩ }
* memcpy l d s
* { d-[b;m)->l,α }
*)
let memcpy_eq_spec dst src len =
let+ seg = Fresh.seg dst ~len in
let dst_heap = Sh.seg seg in
let foot =
Sh.and_ (Formula.eq dst src) (Sh.and_ (Formula.eq0 len) dst_heap)
in
let post = dst_heap in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ }
* memcpy l d s
* { d-[b;m)->l,α' * s-[b';m')->l,α' }
*)
let memcpy_dj_spec dst src len =
let* dst_seg = Fresh.seg dst ~siz:len in
let dst_heap = Sh.seg dst_seg in
let+ src_seg = Fresh.seg src ~siz:len in
let src_heap = Sh.seg src_seg in
let dst_seg' = {dst_seg with cnt= src_seg.cnt} in
let dst_heap' = Sh.seg dst_seg' in
let foot = Sh.star dst_heap src_heap in
let post = Sh.star dst_heap' src_heap in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let memcpy_specs dst src len =
[memcpy_eq_spec dst src len; memcpy_dj_spec dst src len]
(* { d=s * d-[b;m)->⟨l,α⟩ }
* memmov l d s
* { d-[b;m)->l,α }
*)
let memmov_eq_spec dst src len =
let+ dst_seg = Fresh.seg dst ~len in
let dst_heap = Sh.seg dst_seg in
let foot = Sh.and_ (Formula.eq dst src) dst_heap in
let post = dst_heap in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ }
* memmov l d s
* { d-[b;m)->l,α' * s-[b';m')->l,α' }
*)
let memmov_dj_spec = memcpy_dj_spec
(* memmov footprint for dst < src case *)
let memmov_foot dst src len =
let* bas = Fresh.var "b" in
let* siz = Fresh.var "m" in
let* cnt_dst = Fresh.var "a" in
let* cnt_mid = Fresh.var "a" in
let* cnt_src = Fresh.var "a" in
let src_dst = Term.sub src dst in
let mem_dst = (src_dst, cnt_dst) in
let siz_mid = Term.sub len src_dst in
let mem_mid = (siz_mid, cnt_mid) in
let mem_src = (src_dst, cnt_src) in
let mem_dst_mid_src = [|mem_dst; mem_mid; mem_src|] in
let* siz_dst_mid_src = Fresh.var "m" in
let+ cnt_dst_mid_src = Fresh.var "a" in
let eq_mem_dst_mid_src =
eq_concat (siz_dst_mid_src, cnt_dst_mid_src) mem_dst_mid_src
in
let seg =
Sh.seg
{loc= dst; bas; len= siz; siz= siz_dst_mid_src; cnt= cnt_dst_mid_src}
in
let foot =
Sh.and_ eq_mem_dst_mid_src
(Sh.and_ (Formula.lt dst src)
(Sh.and_ (Formula.lt src (Term.add dst len)) seg))
in
(bas, siz, mem_dst, mem_mid, mem_src, foot)
(* { d<s * s<d+l * d-[b;m)->⟨s-d,α⟩^⟨l-(s-d),β⟩^⟨s-d,γ⟩ }
* memmov l d s
* { d-[b;m)->l-(s-d),β^s-d,γ^s-d,γ }
*)
let memmov_dn_spec dst src len =
let* bas, siz, _, mem_mid, mem_src, foot = memmov_foot dst src len in
let mem_mid_src_src = [|mem_mid; mem_src; mem_src|] in
let* siz_mid_src_src = Fresh.var "m" in
let+ cnt_mid_src_src = Fresh.var "a" in
let eq_mem_mid_src_src =
eq_concat (siz_mid_src_src, cnt_mid_src_src) mem_mid_src_src
in
let post =
Sh.and_ eq_mem_mid_src_src
(Sh.seg
{ loc= dst
; bas
; len= siz
; siz= siz_mid_src_src
; cnt= cnt_mid_src_src })
in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { s<d * d<s+l * s-[b;m)->⟨d-s,α⟩^⟨l-(d-s),β⟩^⟨d-s,γ⟩ }
* memmov l d s
* { s-[b;m)->d-s,α^d-s,α^l-(d-s),β }
*)
let memmov_up_spec dst src len =
let* bas, siz, mem_src, mem_mid, _, foot = memmov_foot src dst len in
let mem_src_src_mid = [|mem_src; mem_src; mem_mid|] in
let* siz_src_src_mid = Fresh.var "m" in
let+ cnt_src_src_mid = Fresh.var "a" in
let eq_mem_src_src_mid =
eq_concat (siz_src_src_mid, cnt_src_src_mid) mem_src_src_mid
in
let post =
Sh.and_ eq_mem_src_src_mid
(Sh.seg
{ loc= src
; bas
; len= siz
; siz= siz_src_src_mid
; cnt= cnt_src_src_mid })
in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let memmov_specs dst src len =
[ memmov_eq_spec dst src len
; memmov_dj_spec dst src len
; memmov_dn_spec dst src len
; memmov_up_spec dst src len ]
(* { emp }
* alloc r [n × l]
* { α'. r-[r;(n×l)Θ)->(n×l)Θ,α' }
*)
let alloc_spec reg num len =
let foot = Sh.emp in
let siz = Term.mulq (Q.of_int len) num in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz in
let post = Sh.seg seg in
{foot; sub; ms; post}
(*
* Memory management - see e.g. http://jemalloc.net/jemalloc.3.html
*)
(* { p=0 p-[p;m)->⟨m,α⟩ }
* free p
* { emp }
*)
let free_spec ptr =
let* len = Fresh.var "m" in
let+ seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.or_ (null_eq ptr) (Sh.seg seg) in
let post = Sh.emp in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[p;m)->⟨m,α⟩ }
* dallocx p
* { emp }
*)
let dallocx_spec ptr =
let* len = Fresh.var "m" in
let+ seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.seg seg in
let post = Sh.emp in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { emp }
* malloc r s
* { r=0 α'. r-[r;sΘ)->sΘ,α' }
*)
let malloc_spec reg siz =
let foot = Sh.emp in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz in
let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in
{foot; sub; ms; post}
(* { s≠0 }
* mallocx r s
* { r=0 α'. r-[r;sΘ)->sΘ,α' }
*)
let mallocx_spec reg siz =
let foot = Sh.pure (Formula.dq0 siz) in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz in
let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in
{foot; sub; ms; post}
(* { emp }
* calloc r [n × l]
* { r=0 r-[r;(n×l)Θ)->(n×l)Θ,0^ }
*)
let calloc_spec reg num len =
let foot = Sh.emp in
let siz = Term.mul num len in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let cnt = Term.splat Term.zero in
let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz ~cnt in
let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in
{foot; sub; ms; post}
let size_of_ptr = Term.integer (Z.of_int Llair.Typ.(size_of ptr))
let size_of_siz = Term.integer (Z.of_int Llair.Typ.(size_of siz))
(* { p-[_;_)->⟨W,_⟩ }
* posix_memalign r p s
* { r=ENOMEM * (p-[_;_)->W,_)Θ
* α',q. r=0 * (p-[_;_)->W,q * q-[q;s)->s,α')Θ }
* where W = sizeof void*
*)
let posix_memalign_spec reg ptr siz =
let* pseg = Fresh.seg ptr ~siz:size_of_ptr in
let foot = Sh.seg pseg in
let* sub, ms =
Fresh.assign ~ws:(Var.Set.of_ reg)
~rs:(Var.Set.union foot.us (Term.fv siz))
in
let* q = Fresh.var "q" in
let pseg' = {pseg with cnt= q} in
let+ qseg = Fresh.seg q ~bas:q ~len:siz ~siz in
let eok = Term.zero in
let enomem = Term.integer (Z.of_int 12) in
let post =
Sh.or_
(Sh.and_ (Formula.eq (Term.var reg) enomem) (Sh.rename sub foot))
(Sh.and_
(Formula.eq (Term.var reg) eok)
(Sh.rename sub (Sh.star (Sh.seg pseg') (Sh.seg qseg))))
in
{foot; sub; ms; post}
(* { p=0 p-[p;m)->⟨m,α⟩ }
* realloc r p s
* { (r=0 * (pΘ=0 pΘ-[pΘ;m)->m,α))
* α',α'' . r-[r;sΘ)->sΘ,α'
* * (msΘ ? sΘ,α'=m,α^sΘ-m,α'' : m,α=sΘ,α'^m-sΘ,α'') }
*)
let realloc_spec reg ptr siz =
let* len = Fresh.var "m" in
let* pseg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.or_ (null_eq ptr) (Sh.seg pseg) in
let* sub, ms =
Fresh.assign ~ws:(Var.Set.of_ reg)
~rs:(Var.Set.union foot.us (Term.fv siz))
in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let* rseg = Fresh.seg loc ~bas:loc ~len:siz ~siz in
let a0 = pseg.cnt in
let a1 = rseg.cnt in
let+ a2 = Fresh.var "a" in
let post =
Sh.or_
(Sh.and_ (Formula.eq0 loc) (Sh.rename sub foot))
(Sh.and_
(Formula.cond ~cnd:(Formula.le len siz)
~pos:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|])
~neg:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|]))
(Sh.seg rseg))
in
{foot; sub; ms; post}
(* { s≠0 * p-[p;m)->⟨m,α⟩ }
* rallocx r p s
* { (r=0 * pΘ-[pΘ;m)->m,α)
* α',α'' . r-[r;sΘ)->sΘ,α'
* * (msΘ ? sΘ,α'=m,α^sΘ-m,α'' : m,α=sΘ,α'^m-sΘ,α'') }
*)
let rallocx_spec reg ptr siz =
let* len = Fresh.var "m" in
let* pseg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let pheap = Sh.seg pseg in
let foot = Sh.and_ (Formula.dq0 siz) pheap in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let* rseg = Fresh.seg loc ~bas:loc ~len:siz ~siz in
let a0 = pseg.cnt in
let a1 = rseg.cnt in
let+ a2 = Fresh.var "a" in
let post =
Sh.or_
(Sh.and_ (Formula.eq0 loc) (Sh.rename sub pheap))
(Sh.and_
(Formula.cond ~cnd:(Formula.le len siz)
~pos:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|])
~neg:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|]))
(Sh.seg rseg))
in
{foot; sub; ms; post}
(* { s≠0 * p-[p;m)->⟨m,α⟩ }
* xallocx r p s e
* { α',α'' . sΘr(s+e)Θ * pΘ-[pΘ;r)->r,α'
* * (mr ? r,α'=m,α^r-m,α'' : m,α=r,α'^m-r,α'') }
*)
let xallocx_spec reg ptr siz ext =
let* len = Fresh.var "m" in
let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.and_ (Formula.dq0 siz) (Sh.seg seg) in
let* sub, ms =
Fresh.assign ~ws:(Var.Set.of_ reg)
~rs:Var.Set.(union foot.us (union (Term.fv siz) (Term.fv ext)))
in
let reg = Term.var reg in
let ptr = Term.rename sub ptr in
let siz = Term.rename sub siz in
let ext = Term.rename sub ext in
let* seg' = Fresh.seg ptr ~bas:ptr ~len:reg ~siz:reg in
let a0 = seg.cnt in
let a1 = seg'.cnt in
let+ a2 = Fresh.var "a" in
let post =
Sh.and_
(Formula.and_
(Formula.cond ~cnd:(Formula.le len siz)
~pos:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|])
~neg:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|]))
(Formula.and_ (Formula.le siz reg)
(Formula.le reg (Term.add siz ext))))
(Sh.seg seg')
in
{foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
* sallocx r p
* { r=m * (p-[p;m)->m,α)Θ }
*)
let sallocx_spec reg ptr =
let* len = Fresh.var "m" in
let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.seg seg in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let post = Sh.and_ (Formula.eq (Term.var reg) len) (Sh.rename sub foot) in
{foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
* malloc_usable_size r p
* { mr * (p-[p;m)->m,α)Θ }
*)
let malloc_usable_size_spec reg ptr =
let* len = Fresh.var "m" in
let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.seg seg in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let post = Sh.and_ (Formula.le len (Term.var reg)) (Sh.rename sub foot) in
{foot; sub; ms; post}
(* { s≠0 }
* r = nallocx s
* { r=0 r=sΘ }
*)
let nallocx_spec reg siz =
let foot = Sh.pure (Formula.dq0 siz) in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let post = Sh.or_ (null_eq loc) (Sh.pure (Formula.eq loc siz)) in
{foot; sub; ms; post}
let size_of_int_mul = Term.mulq (Q.of_int Llair.Typ.(size_of siz))
(* { r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨W,m⟩ * w=0 * n=0 }
* mallctl (_, r, i, w, n)
* { α'. r-[_;_)->m,α' * i-[_;_)->W,m }
* where W = sizeof size_t
*)
let mallctl_read_spec r i w n =
let* iseg = Fresh.seg i ~siz:size_of_siz in
let* rseg = Fresh.seg r ~siz:iseg.cnt in
let+ a = Fresh.var "a" in
let foot =
Sh.and_ (Formula.eq0 w)
(Sh.and_ (Formula.eq0 n) (Sh.star (Sh.seg iseg) (Sh.seg rseg)))
in
let rseg' = {rseg with cnt= a} in
let post = Sh.star (Sh.seg rseg') (Sh.seg iseg) in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 }
* mallctlbymib p l r i w n
* { α'. p-[_;_)->W×l,_ * r-[_;_)->m,α' * i-[_;_)->_,m }
* where W = sizeof int
*)
let mallctlbymib_read_spec p l r i w n =
let wl = size_of_int_mul l in
let* pseg = Fresh.seg p ~siz:wl in
let* iseg = Fresh.seg i in
let m = iseg.cnt in
let* rseg = Fresh.seg r ~siz:m in
let const = Sh.star (Sh.seg pseg) (Sh.seg iseg) in
let+ a = Fresh.var "a" in
let foot =
Sh.and_ (Formula.eq0 w)
(Sh.and_ (Formula.eq0 n) (Sh.star const (Sh.seg rseg)))
in
let rseg' = {rseg with cnt= a} in
let post = Sh.star (Sh.seg rseg') const in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { r=0 * i=0 * w-[_;_)->⟨n,_⟩ }
* mallctl (_, r, i, w, n)
* { w-[_;_)->n,_ }
*)
let mallctl_write_spec r i w n =
let+ seg = Fresh.seg w ~siz:n in
let post = Sh.seg seg in
let foot = Sh.and_ (Formula.eq0 r) (Sh.and_ (Formula.eq0 i) post) in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[_;_)->⟨W×l,_⟩ * r=0 * i=0 * w-[_;_)->⟨n,_⟩ }
* mallctl (_, r, i, w, n)
* { p-[_;_)->W×l,_ * w-[_;_)->n,_ }
* where W = sizeof int
*)
let mallctlbymib_write_spec p l r i w n =
let wl = size_of_int_mul l in
let* pseg = Fresh.seg p ~siz:wl in
let+ wseg = Fresh.seg w ~siz:n in
let post = Sh.star (Sh.seg pseg) (Sh.seg wseg) in
let foot = Sh.and_ (Formula.eq0 r) (Sh.and_ (Formula.eq0 i) post) in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let mallctl_specs r i w n =
[mallctl_read_spec r i w n; mallctl_write_spec r i w n]
let mallctlbymib_specs p j r i w n =
[mallctlbymib_read_spec p j r i w n; mallctlbymib_write_spec p j r i w n]
(* { p-[_;_)->⟨W×n,α⟩ * o-[_;_)->⟨_,n⟩ }
* mallctlnametomib p o
* { α'.
* p-[_;_)->W×n,α' * o-[_;_)->_,n }
* where W = sizeof int
*
* Note: post is too strong, more accurate would be:
* { α',α²,α³,n'. W×n,α=W×n',α³^W×(n-n'),α² *
* p-[_;_)->W×n',α' * p+W×n'-[_;_)->W×(n-n'),α² * o-[_;_)->_,n' }
*)
let mallctlnametomib_spec p o =
let* oseg = Fresh.seg o in
let n = oseg.cnt in
let wn = size_of_int_mul n in
let* pseg = Fresh.seg p ~siz:wn in
let+ a = Fresh.var "a" in
let foot = Sh.star (Sh.seg oseg) (Sh.seg pseg) in
let pseg' = {pseg with cnt= a} in
let post = Sh.star (Sh.seg pseg') (Sh.seg oseg) in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(*
* cstring - see e.g. http://www.cplusplus.com/reference/cstring/
*)
(* { p-[b;m)->⟨l,α⟩ }
* r = strlen p
* { r=(b+m-p-1)Θ * (p-[b;m)->l,α)Θ }
*)
let strlen_spec reg ptr =
let* seg = Fresh.seg ptr in
let foot = Sh.seg seg in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let {Sh.loc= p; bas= b; len= m; _} = seg in
let ret = Term.sub (Term.sub (Term.add b m) p) Term.one in
let post =
Sh.and_
(Formula.eq (Term.var reg) (Term.rename sub ret))
(Sh.rename sub foot)
in
{foot; sub; ms; post}
(*
* Symbolic Execution
*)
open Option.Import
let check_preserve_us (q0 : Sh.t) (q1 : Sh.t) =
let gain_us = Var.Set.diff q1.us q0.us in
let lose_us = Var.Set.diff q0.us q1.us in
(Var.Set.is_empty gain_us || fail "gain us: %a" Var.Set.pp gain_us ())
&& (Var.Set.is_empty lose_us || fail "lose us: %a" Var.Set.pp lose_us ())
(* execute a command with given explicitly-quantified spec from
explicitly-quantified pre *)
let exec_spec_ (xs, pre) (gs, {foot; sub; ms; post}) =
([%Trace.call fun {pf} ->
pf "@[%a@]@ @[<2>%a@,@[<hv>{%a %a}@;<1 -1>%a--@ {%a }@]@]" Sh.pp pre
(Sh.pp_us ~pre:"@<2>∀ " ())
gs Sh.pp foot
(fun fs sub ->
if not (Var.Subst.is_empty sub) then
Format.fprintf fs "∧ %a" Var.Subst.pp sub )
sub
(fun fs ms ->
if not (Var.Set.is_empty ms) then
Format.fprintf fs "%a := " Var.Set.pp ms )
ms Sh.pp post ;
(* gs contains all vars in spec not in pre.us *)
assert (
let vs = Var.Set.(diff (diff foot.us gs) pre.us) in
Var.Set.is_empty vs || fail "unbound foot: {%a}" Var.Set.pp vs () ) ;
assert (
let vs = Var.Set.(diff (diff ms gs) pre.us) in
Var.Set.is_empty vs || fail "unbound modif: {%a}" Var.Set.pp vs () ) ;
assert (
let vs = Var.Set.(diff (diff (Var.Subst.domain sub) gs) pre.us) in
Var.Set.is_empty vs || fail "unbound write: {%a}" Var.Set.pp vs () ) ;
assert (
let vs = Var.Set.(diff (diff (Var.Subst.range sub) gs) pre.us) in
Var.Set.is_empty vs || fail "unbound ghost: {%a}" Var.Set.pp vs () ) ;
assert (
let vs = Var.Set.(diff (diff post.us gs) pre.us) in
Var.Set.is_empty vs || fail "unbound post: {%a}" Var.Set.pp vs () )]
;
let+ frame = Solver.infer_frame pre gs foot in
Sh.exists (Var.Set.union xs gs)
(Sh.star post (Sh.exists ms (Sh.rename sub frame))))
|>
[%Trace.retn fun {pf} r ->
pf "%a" (Option.pp "%a" Sh.pp) r ;
assert (Option.for_all ~f:(check_preserve_us (Sh.exists xs pre)) r)]
(* execute a command with given spec from pre *)
let exec_spec pre specm =
let xs, pre = Sh.bind_exists pre ~wrt:Var.Set.empty in
exec_spec_ (xs, pre) (gen_spec pre.us specm)
(* execute a multiple-spec command, where the disjunction of the specs
preconditions are known to be tautologous *)
let exec_specs pre =
let xs, pre = Sh.bind_exists pre ~wrt:Var.Set.empty in
let rec exec_specs_ (xs, pre) = function
| specm :: specs ->
let gs, spec = gen_spec pre.Sh.us specm in
let pure = Sh.pure (Sh.pure_approx spec.foot) in
let pre_pure =
Sh.star (Sh.exists (Var.Set.inter gs pure.us) pure) pre
in
let* post = exec_spec_ (xs, pre_pure) (gs, spec) in
let+ posts = exec_specs_ (xs, pre) specs in
Sh.or_ post posts
| [] -> Some (Sh.false_ Var.Set.empty)
in
exec_specs_ (xs, pre)
let exec_specs pre specs =
[%Trace.call fun _ -> ()]
;
exec_specs pre specs
|>
[%Trace.retn fun _ r ->
assert (Option.for_all ~f:(check_preserve_us pre) r)]
(*
* Exposed interface
*)
let assume pre cnd =
let post = Sh.and_ cnd pre in
if Sh.is_false post then None else Some post
let kill pre reg =
let ms = Var.Set.of_ reg in
Sh.extend_us ms (Sh.exists ms pre)
let move pre reg_exps =
exec_spec pre (move_spec reg_exps)
|> function Some post -> post | _ -> fail "Exec.move failed" ()
let load pre ~reg ~ptr ~len = exec_spec pre (load_spec reg ptr len)
let store pre ~ptr ~exp ~len = exec_spec pre (store_spec ptr exp len)
let alloc pre ~reg ~num ~len = exec_spec pre (alloc_spec reg num len)
let free pre ~ptr = exec_spec pre (free_spec ptr)
let nondet pre = function Some reg -> kill pre reg | None -> pre
let abort _ = None
let intrinsic :
Sh.t
-> Var.t option
-> Llair.Intrinsic.t
-> Term.t iarray
-> Sh.t option =
fun pre areturn intrinsic actuals ->
match (areturn, intrinsic, IArray.to_array actuals) with
(*
* llvm intrinsics
*)
| None, `memset, [|dst; byt; len; _isvolatile|] ->
exec_spec pre (memset_spec dst byt len)
| None, `memcpy, [|dst; src; len; _isvolatile|] ->
exec_specs pre (memcpy_specs dst src len)
| None, `memmove, [|dst; src; len; _isvolatile|] ->
exec_specs pre (memmov_specs dst src len)
(*
* cstdlib - memory management
*)
(* void* malloc(size_t size) *)
| Some reg, `malloc, [|size|]
(* void* aligned_alloc(size_t alignment, size_t size) *)
|Some reg, `aligned_alloc, [|_; size|] ->
exec_spec pre (malloc_spec reg size)
(* void* calloc(size_t number, size_t size) *)
| Some reg, `calloc, [|number; size|] ->
exec_spec pre (calloc_spec reg number size)
(* int posix_memalign(void** ptr, size_t alignment, size_t size) *)
| Some reg, `posix_memalign, [|ptr; _; size|] ->
exec_spec pre (posix_memalign_spec reg ptr size)
(* void* realloc(void* ptr, size_t size) *)
| Some reg, `realloc, [|ptr; size|] ->
exec_spec pre (realloc_spec reg ptr size)
(*
* jemalloc - non-standard API
*)
(* void* mallocx(size_t size, int flags) *)
| Some reg, `mallocx, [|size; _|] -> exec_spec pre (mallocx_spec reg size)
(* void* rallocx(void* ptr, size_t size, int flags) *)
| Some reg, `rallocx, [|ptr; size; _|] ->
exec_spec pre (rallocx_spec reg ptr size)
(* size_t xallocx(void* ptr, size_t size, size_t extra, int flags) *)
| Some reg, `xallocx, [|ptr; size; extra; _|] ->
exec_spec pre (xallocx_spec reg ptr size extra)
(* size_t sallocx(void* ptr, int flags) *)
| Some reg, `sallocx, [|ptr; _|] -> exec_spec pre (sallocx_spec reg ptr)
(* void dallocx(void* ptr, int flags) *)
| None, `dallocx, [|ptr; _|]
(* void sdallocx(void* ptr, size_t size, int flags) *)
|None, `sdallocx, [|ptr; _; _|] ->
exec_spec pre (dallocx_spec ptr)
(* size_t nallocx(size_t size, int flags) *)
| Some reg, `nallocx, [|size; _|] -> exec_spec pre (nallocx_spec reg size)
(* size_t malloc_usable_size(void* ptr) *)
| Some reg, `malloc_usable_size, [|ptr|] ->
exec_spec pre (malloc_usable_size_spec reg ptr)
(* int mallctl(const char* name, void* oldp, size_t* oldlenp, void* newp,
size_t newlen) *)
| Some _, `mallctl, [|_; oldp; oldlenp; newp; newlen|] ->
exec_specs pre (mallctl_specs oldp oldlenp newp newlen)
(* int mallctlnametomib(const char* name, size_t* mibp, size_t* miblenp) *)
| Some _, `mallctlnametomib, [|_; mibp; miblenp|] ->
exec_spec pre (mallctlnametomib_spec mibp miblenp)
(* int mallctlbymib(const size_t* mib, size_t miblen, void* oldp, size_t*
oldlenp, void* newp, size_t newlen); *)
| Some _, `mallctlbymib, [|mib; miblen; oldp; oldlenp; newp; newlen|] ->
exec_specs pre
(mallctlbymib_specs mib miblen oldp oldlenp newp newlen)
| _, `malloc_stats_print, _ -> Some pre
(*
* cstring
*)
(* size_t strlen (const char* ptr) *)
| Some reg, `strlen, [|ptr|] -> exec_spec pre (strlen_spec reg ptr)
(*
* folly
*)
(* bool folly::usingJEMalloc() *)
| Some _, `_ZN5folly13usingJEMallocEv, [||] -> Some pre
(*
* signature mismatch
*)
| ( _
, ( `memset | `memcpy | `memmove | `malloc | `aligned_alloc | `calloc
| `posix_memalign | `realloc | `mallocx | `rallocx | `xallocx
| `sallocx | `dallocx | `sdallocx | `nallocx | `malloc_usable_size
| `mallctl | `mallctlnametomib | `mallctlbymib | `strlen
| `_ZN5folly13usingJEMallocEv )
, _ ) ->
fail "%aintrinsic %a%a;"
(Option.pp "%a := " Var.pp)
areturn Llair.Intrinsic.pp intrinsic (IArray.pp "@ " Term.pp)
actuals ()