You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

789 lines
25 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Symbolic Heap Formulas *)
[@@@warning "+9"]
type seg = {loc: Term.t; bas: Term.t; len: Term.t; siz: Term.t; arr: Term.t}
[@@deriving compare, equal, sexp]
type starjunction =
{ us: Var.Set.t
; xs: Var.Set.t
; cong: Equality.t
; pure: Term.t list
; heap: seg list
; djns: disjunction list }
[@@deriving compare, equal, sexp]
and disjunction = starjunction list
type t = starjunction [@@deriving compare, equal, sexp]
(** Basic values *)
let emp =
{ us= Var.Set.empty
; xs= Var.Set.empty
; cong= Equality.true_
; pure= []
; heap= []
; djns= [] }
let false_ us = {emp with us; djns= [[]]}
(** Traversals *)
let map_seg ~f h =
let loc = f h.loc in
let bas = f h.bas in
let len = f h.len in
let siz = f h.siz in
let arr = f h.arr in
if
loc == h.loc && bas == h.bas && len == h.len && siz == h.siz
&& arr == h.arr
then h
else {loc; bas; len; siz; arr}
let map ~f_sjn ~f_cong ~f_trm ({us; xs= _; cong; pure; heap; djns} as q) =
let exception Unsat in
try
let cong = f_cong cong in
let pure =
List.filter_map_endo pure ~f:(fun e ->
let e' = f_trm e in
if Term.is_false e' then raise Unsat
else if Term.is_true e' then None
else Some e' )
in
let heap = List.map_endo heap ~f:(map_seg ~f:f_trm) in
let djns = List.map_endo djns ~f:(List.map_endo ~f:f_sjn) in
if cong == q.cong && pure == q.pure && heap == q.heap && djns == q.djns
then q
else {q with cong; pure; heap; djns}
with Unsat -> false_ us
let fold_terms_seg {loc; bas; len; siz; arr} ~init ~f =
let f b s = f s b in
f loc (f bas (f len (f siz (f arr init))))
let fold_vars_seg seg ~init ~f =
fold_terms_seg seg ~init ~f:(fun init -> Term.fold_vars ~f ~init)
let fold_vars_stem ?ignore_cong {us= _; xs= _; cong; pure; heap; djns= _}
~init ~f =
List.fold ~init heap ~f:(fun init -> fold_vars_seg ~f ~init)
|> fun init ->
List.fold ~init pure ~f:(fun init -> Term.fold_vars ~f ~init)
|> fun init ->
if Option.is_some ignore_cong then init
else
Equality.fold_terms ~init cong ~f:(fun init -> Term.fold_vars ~f ~init)
let fold_vars ?ignore_cong fold_vars q ~init ~f =
fold_vars_stem ?ignore_cong ~init ~f q
|> fun init ->
List.fold ~init q.djns ~f:(fun init -> List.fold ~init ~f:fold_vars)
(** Pretty-printing *)
let rec var_strength_ xs m q =
let add m v =
match Var.Map.find m v with
| None -> Var.Map.set m ~key:v ~data:`Anonymous
| Some `Anonymous -> Var.Map.set m ~key:v ~data:`Existential
| Some _ -> m
in
let xs = Var.Set.union xs q.xs in
let m_stem =
fold_vars_stem ~ignore_cong:() q ~init:m ~f:(fun m var ->
if not (Var.Set.mem xs var) then
Var.Map.set m ~key:var ~data:`Universal
else add m var )
in
let m =
List.fold ~init:m_stem q.djns ~f:(fun m djn ->
let ms = List.map ~f:(fun dj -> snd (var_strength_ xs m dj)) djn in
List.reduce_balanced ms ~f:(fun m1 m2 ->
Var.Map.merge_skewed m1 m2 ~combine:(fun ~key:_ s1 s2 ->
match (s1, s2) with
| `Anonymous, `Anonymous -> `Anonymous
| `Universal, _ | _, `Universal -> `Universal
| `Existential, _ | _, `Existential -> `Existential ) )
|> Option.value ~default:m )
in
(m_stem, m)
let var_strength_full ?(xs = Var.Set.empty) q =
let m =
Var.Set.fold xs ~init:Var.Map.empty ~f:(fun m x ->
Var.Map.set m ~key:x ~data:`Existential )
in
var_strength_ xs m q
let var_strength q = snd (var_strength_full q)
let pp_memory x fs (siz, arr) = Term.ppx x fs (Term.memory ~siz ~arr)
let pp_seg x fs {loc; bas; len; siz; arr} =
let term_pp = Term.ppx x in
Format.fprintf fs "@[<2>%a@ @[@[-[%a)->@]@ %a@]@]" term_pp loc
(fun fs (bas, len) ->
if (not (Term.equal loc bas)) || not (Term.equal len siz) then
Format.fprintf fs " %a, %a " term_pp bas term_pp len )
(bas, len) (pp_memory x) (siz, arr)
let pp_seg_norm cong fs seg =
let x _ = None in
pp_seg x fs (map_seg seg ~f:(Equality.normalize cong))
let pp_block x fs segs =
let is_full_alloc segs =
match segs with
| {loc; bas; len; _} :: _ -> (
Term.equal loc bas
&&
match len with
| Integer {data} -> (
match
List.fold segs ~init:(Some Z.zero) ~f:(fun len seg ->
match (len, seg.siz) with
| Some len, Integer {data} -> Some (Z.add len data)
| _ -> None )
with
| Some blk_len -> Z.equal data blk_len
| _ -> false )
| _ -> false )
| [] -> false
in
let term_pp = Term.ppx x in
let pp_mems =
List.pp "@,^" (fun fs seg -> pp_memory x fs (seg.siz, seg.arr))
in
match segs with
| {loc; bas; len; _} :: _ ->
Format.fprintf fs "@[<2>%a@ @[@[-[%t)->@]@ @[%a@]@]@]" term_pp loc
(fun fs ->
if not (is_full_alloc segs) then
Format.fprintf fs " %a, %a " term_pp bas term_pp len )
pp_mems segs
| [] -> ()
let pp_heap x ?pre cong fs heap =
let bas_off = function
| Term.Add poly as sum ->
let const = Term.Qset.count poly Term.one in
(Term.sub sum (Term.rational const), const)
| e -> (e, Q.zero)
in
let compare s1 s2 =
[%compare: Term.t * (Term.t * Q.t)]
( Equality.normalize cong s1.bas
, bas_off (Equality.normalize cong s1.loc) )
( Equality.normalize cong s2.bas
, bas_off (Equality.normalize cong s2.loc) )
in
let break s1 s2 =
(not (Term.equal s1.bas s2.bas))
|| (not (Term.equal s1.len s2.len))
|| not (Equality.entails_eq cong (Term.add s1.loc s1.siz) s2.loc)
in
let heap = List.map heap ~f:(map_seg ~f:(Equality.normalize cong)) in
let blocks = List.group ~break (List.sort ~compare heap) in
List.pp ?pre "@ * " (pp_block x) fs blocks
let pp_us ?(pre = ("" : _ fmt)) ?vs () fs us =
match vs with
| None ->
if not (Var.Set.is_empty us) then
[%Trace.fprintf fs "%( %)@[%a@] .@ " pre Var.Set.pp us]
| Some vs ->
if not (Var.Set.equal vs us) then
[%Trace.fprintf
fs "%( %)@[%a@] .@ " pre (Var.Set.pp_diff Var.pp) (vs, us)]
let rec pp_ ?var_strength vs parent_xs parent_cong fs
{us; xs; cong; pure; heap; djns} =
Format.pp_open_hvbox fs 0 ;
let x v = Option.bind ~f:(fun (_, m) -> Var.Map.find m v) var_strength in
pp_us ~vs () fs us ;
let xs_d_vs, xs_i_vs =
Var.Set.diff_inter
(Var.Set.filter xs ~f:(fun v -> Poly.(x v <> Some `Anonymous)))
vs
in
if not (Var.Set.is_empty xs_i_vs) then (
Format.fprintf fs "@<2>∃ @[%a@] ." (Var.Set.ppx x) xs_i_vs ;
if not (Var.Set.is_empty xs_d_vs) then Format.fprintf fs "@ " ) ;
if not (Var.Set.is_empty xs_d_vs) then
Format.fprintf fs "@<2>∃ @[%a@] .@ " (Var.Set.ppx x) xs_d_vs ;
let first = Equality.entails parent_cong cong in
if not first then Format.fprintf fs " " ;
Equality.ppx_classes_diff x fs (parent_cong, cong) ;
let pure =
if Option.is_none var_strength then pure
else
List.filter_map pure ~f:(fun e ->
let e' = Equality.normalize cong e in
if Term.is_true e' then None else Some e' )
in
List.pp
~pre:(if first then "@[ " else "@ @[@<2>∧ ")
"@ @<2>∧ " (Term.ppx x) fs
(List.dedup_and_sort ~compare:Term.compare pure)
~suf:"@]" ;
let first = first && List.is_empty pure in
if List.is_empty heap then
Format.fprintf fs
( if first then if List.is_empty djns then " emp" else ""
else "@ @<5>∧ emp" )
else pp_heap x ~pre:(if first then " " else "@ @<2>∧ ") cong fs heap ;
let first = first && List.is_empty heap in
List.pp
~pre:(if first then " " else "@ * ")
"@ * "
(pp_djn ?var_strength
(Var.Set.union vs (Var.Set.union us xs))
(Var.Set.union parent_xs xs)
cong)
fs djns ;
Format.pp_close_box fs ()
and pp_djn ?var_strength vs xs cong fs = function
| [] -> Format.fprintf fs "false"
| djn ->
Format.fprintf fs "@[<hv>( %a@ )@]"
(List.pp "@ @<2> " (fun fs sjn ->
let var_strength =
let+ var_strength_stem, _ = var_strength in
var_strength_ xs var_strength_stem sjn
in
Format.fprintf fs "@[<hv 1>(%a)@]"
(pp_ ?var_strength vs (Var.Set.union xs sjn.xs) cong)
sjn ))
djn
let pp_diff_eq ?(us = Var.Set.empty) ?(xs = Var.Set.empty) cong fs q =
pp_ ~var_strength:(var_strength_full ~xs q) us xs cong fs q
let pp fs q = pp_diff_eq Equality.true_ fs q
let pp_djn fs d = pp_djn Var.Set.empty Var.Set.empty Equality.true_ fs d
let pp_raw fs q = pp_ Var.Set.empty Var.Set.empty Equality.true_ fs q
let fv_seg seg = fold_vars_seg seg ~f:Var.Set.add ~init:Var.Set.empty
let fv ?ignore_cong q =
let rec fv_union init q =
Var.Set.diff
(fold_vars ?ignore_cong fv_union q ~init ~f:Var.Set.add)
q.xs
in
fv_union Var.Set.empty q
let invariant_pure = function
| Term.Integer {data} -> assert (not (Z.is_false data))
| _ -> assert true
let invariant_seg _ = ()
let rec invariant q =
Invariant.invariant [%here] q [%sexp_of: t]
@@ fun () ->
let {us; xs; cong; pure; heap; djns} = q in
try
assert (
Var.Set.disjoint us xs
|| fail "inter: @[%a@]@\nq: @[%a@]" Var.Set.pp (Var.Set.inter us xs)
pp q () ) ;
assert (
Var.Set.is_subset (fv q) ~of_:us
|| fail "unbound but free: %a" Var.Set.pp (Var.Set.diff (fv q) us) ()
) ;
Equality.invariant cong ;
( match djns with
| [[]] ->
assert (Equality.is_true cong) ;
assert (List.is_empty pure) ;
assert (List.is_empty heap)
| _ -> assert (not (Equality.is_false cong)) ) ;
List.iter pure ~f:invariant_pure ;
List.iter heap ~f:invariant_seg ;
List.iter djns ~f:(fun djn ->
List.iter djn ~f:(fun sjn ->
assert (Var.Set.is_subset sjn.us ~of_:(Var.Set.union us xs)) ;
invariant sjn ) )
with exc -> [%Trace.info "%a" pp q] ; raise exc
(** Quantification and Vocabulary *)
(** primitive application of a substitution, ignores us and xs, may violate
invariant *)
let rec apply_subst sub q =
map q ~f_sjn:(rename sub)
~f_cong:(fun r -> Equality.rename r sub)
~f_trm:(Term.rename sub)
|> check (fun q' ->
assert (Var.Set.disjoint (fv q') (Var.Subst.domain sub)) )
and rename sub q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Var.Subst.pp sub pp q]
;
let sub = Var.Subst.restrict sub q.us in
( if Var.Subst.is_empty sub then q
else
let us = Var.Subst.apply_set sub q.us in
assert (not (Var.Set.equal us q.us)) ;
let q' = apply_subst sub (freshen_xs q ~wrt:(Var.Set.union q.us us)) in
{q' with us} )
|>
[%Trace.retn fun {pf} q' ->
pf "%a" pp q' ;
invariant q' ;
assert (Var.Set.disjoint q'.us (Var.Subst.domain sub))]
(** freshen existentials, preserving vocabulary *)
and freshen_xs q ~wrt =
[%Trace.call fun {pf} ->
pf "{@[%a@]}@ %a" Var.Set.pp wrt pp q ;
assert (Var.Set.is_subset q.us ~of_:wrt)]
;
let sub = Var.Subst.freshen q.xs ~wrt in
( if Var.Subst.is_empty sub then q
else
let xs = Var.Subst.apply_set sub q.xs in
let q' = apply_subst sub q in
if xs == q.xs && q' == q then q else {q' with xs} )
|>
[%Trace.retn fun {pf} q' ->
pf "%a@ %a" Var.Subst.pp sub pp q' ;
assert (Var.Set.equal q'.us q.us) ;
assert (Var.Set.disjoint q'.xs (Var.Subst.domain sub)) ;
assert (Var.Set.disjoint q'.xs (Var.Set.inter q.xs wrt)) ;
invariant q']
let extend_us us q =
let us = Var.Set.union us q.us in
let q' = freshen_xs q ~wrt:us in
(if us == q.us && q' == q then q else {q' with us}) |> check invariant
let freshen ~wrt q =
let sub = Var.Subst.freshen q.us ~wrt:(Var.Set.union wrt q.xs) in
let q' = extend_us wrt (rename sub q) in
(if q' == q then (q, sub) else (q', sub))
|> check (fun (q', _) ->
invariant q' ;
assert (Var.Set.is_subset wrt ~of_:q'.us) ;
assert (Var.Set.disjoint wrt (fv q')) )
let bind_exists q ~wrt =
[%Trace.call fun {pf} -> pf "{@[%a@]}@ %a" Var.Set.pp wrt pp q]
;
let q' =
if Var.Set.is_empty wrt then q
else freshen_xs q ~wrt:(Var.Set.union q.us wrt)
in
(q'.xs, {q' with us= Var.Set.union q'.us q'.xs; xs= Var.Set.empty})
|>
[%Trace.retn fun {pf} (_, q') -> pf "%a" pp q']
let exists_fresh xs q =
[%Trace.call fun {pf} ->
pf "{@[%a@]}@ %a" Var.Set.pp xs pp q ;
assert (
Var.Set.disjoint xs q.us
|| fail "Sh.exists_fresh xs ∩ q.us: %a" Var.Set.pp
(Var.Set.inter xs q.us) () )]
;
( if Var.Set.is_empty xs then q
else {q with xs= Var.Set.union q.xs xs} |> check invariant )
|>
[%Trace.retn fun {pf} -> pf "%a" pp]
let exists xs q =
[%Trace.call fun {pf} -> pf "{@[%a@]}@ %a" Var.Set.pp xs pp q]
;
assert (
Var.Set.is_subset xs ~of_:q.us
|| fail "Sh.exists xs - q.us: %a" Var.Set.pp (Var.Set.diff xs q.us) ()
) ;
( if Var.Set.is_empty xs then q
else
{q with us= Var.Set.diff q.us xs; xs= Var.Set.union q.xs xs}
|> check invariant )
|>
[%Trace.retn fun {pf} -> pf "%a" pp]
(** remove quantification on variables disjoint from vocabulary *)
let elim_exists xs q =
assert (Var.Set.disjoint xs q.us) ;
{q with us= Var.Set.union q.us xs; xs= Var.Set.diff q.xs xs}
(** Construct *)
(** conjoin an equality relation assuming vocabulary is compatible *)
let and_cong_ cong q =
assert (Var.Set.is_subset (Equality.fv cong) ~of_:q.us) ;
let xs, cong = Equality.and_ (Var.Set.union q.us q.xs) q.cong cong in
if Equality.is_false cong then false_ q.us
else exists_fresh xs {q with cong}
let and_cong cong q =
[%Trace.call fun {pf} -> pf "%a@ %a" Equality.pp cong pp q]
;
( match q.djns with
| [[]] -> q
| _ -> and_cong_ cong (extend_us (Equality.fv cong) q) )
|>
[%Trace.retn fun {pf} q -> pf "%a" pp q ; invariant q]
let star q1 q2 =
[%Trace.call fun {pf} -> pf "(%a)@ (%a)" pp q1 pp q2]
;
( match (q1, q2) with
| {djns= [[]]; _}, _ | _, {djns= [[]]; _} ->
false_ (Var.Set.union q1.us q2.us)
| {us= _; xs= _; cong; pure= []; heap= []; djns= []}, _
when Equality.is_true cong ->
let us = Var.Set.union q1.us q2.us in
if us == q2.us then q2 else {q2 with us}
| _, {us= _; xs= _; cong; pure= []; heap= []; djns= []}
when Equality.is_true cong ->
let us = Var.Set.union q1.us q2.us in
if us == q1.us then q1 else {q1 with us}
| _ ->
let us = Var.Set.union q1.us q2.us in
let q1 = freshen_xs q1 ~wrt:(Var.Set.union us q2.xs) in
let q2 = freshen_xs q2 ~wrt:(Var.Set.union us q1.xs) in
let {us= us1; xs= xs1; cong= c1; pure= p1; heap= h1; djns= d1} = q1 in
let {us= us2; xs= xs2; cong= c2; pure= p2; heap= h2; djns= d2} = q2 in
assert (Var.Set.equal us (Var.Set.union us1 us2)) ;
let xs, cong =
Equality.and_ (Var.Set.union us (Var.Set.union xs1 xs2)) c1 c2
in
if Equality.is_false cong then false_ us
else
exists_fresh xs
{ us
; xs= Var.Set.union xs1 xs2
; cong
; pure= List.append p1 p2
; heap= List.append h1 h2
; djns= List.append d1 d2 } )
|>
[%Trace.retn fun {pf} q ->
pf "%a" pp q ;
invariant q ;
assert (Var.Set.equal q.us (Var.Set.union q1.us q2.us))]
let starN = function
| [] -> emp
| [q] -> q
| q :: qs -> List.fold ~f:star ~init:q qs
let or_ q1 q2 =
[%Trace.call fun {pf} -> pf "(%a)@ (%a)" pp_raw q1 pp_raw q2]
;
( match (q1, q2) with
| {djns= [[]]; _}, _ -> extend_us q1.us q2
| _, {djns= [[]]; _} -> extend_us q2.us q1
| ( ({djns= []; _} as q)
, ({us= _; xs; cong= _; pure= []; heap= []; djns= [djn]} as d) )
when Var.Set.is_empty xs ->
{d with us= Var.Set.union q.us d.us; djns= [q :: djn]}
| ( ({us= _; xs; cong= _; pure= []; heap= []; djns= [djn]} as d)
, ({djns= []; _} as q) )
when Var.Set.is_empty xs ->
{d with us= Var.Set.union q.us d.us; djns= [q :: djn]}
| _ ->
{ us= Var.Set.union q1.us q2.us
; xs= Var.Set.empty
; cong= Equality.true_
; pure= []
; heap= []
; djns= [[q1; q2]] } )
|>
[%Trace.retn fun {pf} q ->
pf "%a" pp_raw q ;
invariant q ;
assert (Var.Set.equal q.us (Var.Set.union q1.us q2.us))]
let orN = function
| [] -> false_ Var.Set.empty
| [q] -> q
| q :: qs -> List.fold ~f:or_ ~init:q qs
let rec pure (e : Term.t) =
[%Trace.call fun {pf} -> pf "%a" Term.pp e]
;
( match e with
| Or es ->
let e0, e1N = Term.Set.pop_exn es in
Term.Set.fold e1N ~init:(pure e0) ~f:(fun q e -> or_ q (pure e))
| Ap3 (Conditional, cnd, thn, els) ->
or_
(star (pure cnd) (pure thn))
(star (pure (Term.not_ cnd)) (pure els))
| _ ->
let us = Term.fv e in
let xs, cong = Equality.(and_term us e true_) in
if Equality.is_false cong then false_ us
else exists_fresh xs {emp with us; cong; pure= [e]} )
|>
[%Trace.retn fun {pf} q -> pf "%a" pp q ; invariant q]
let and_ e q = star (pure e) q
let and_subst subst q =
[%Trace.call fun {pf} -> pf "%a@ %a" Equality.Subst.pp subst pp q]
;
Equality.Subst.fold
~f:(fun ~key ~data -> and_ (Term.eq key data))
subst ~init:q
|>
[%Trace.retn fun {pf} q -> pf "%a" pp q ; invariant q]
let subst sub q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Var.Subst.pp sub pp q]
;
let dom, eqs =
Var.Subst.fold sub ~init:(Var.Set.empty, Term.true_)
~f:(fun var trm (dom, eqs) ->
( Var.Set.add dom var
, Term.and_ (Term.eq (Term.var var) (Term.var trm)) eqs ) )
in
exists dom (and_ eqs q)
|>
[%Trace.retn fun {pf} q' ->
pf "%a" pp q' ;
invariant q' ;
assert (Var.Set.disjoint q'.us (Var.Subst.domain sub))]
let seg pt =
let us = fv_seg pt in
if Term.equal Term.null pt.loc then false_ us
else {emp with us; heap= [pt]} |> check invariant
(** Update *)
let with_pure pure q = {q with pure} |> check invariant
let rem_seg seg q =
{q with heap= List.remove_exn q.heap seg} |> check invariant
let filter_heap ~f q =
{q with heap= List.filter q.heap ~f} |> check invariant
(** Query *)
let is_emp = function
| {us= _; xs= _; cong= _; pure= []; heap= []; djns= []} -> true
| _ -> false
let is_false = function
| {djns= [[]]; _} -> true
| {cong; pure; heap; _} ->
List.exists pure ~f:(fun b ->
Term.is_false (Equality.normalize cong b) )
|| List.exists heap ~f:(fun seg ->
Equality.entails_eq cong seg.loc Term.null )
let rec pure_approx ({us; xs; cong; pure; heap= _; djns} as q) =
let heap = emp.heap in
let djns =
List.map_endo djns ~f:(fun djn -> List.map_endo djn ~f:pure_approx)
in
if heap == q.heap && djns == q.djns then q
else {us; xs; cong; pure; heap; djns} |> check invariant
let pure_approx q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
pure_approx q
|>
[%Trace.retn fun {pf} -> pf "%a" pp]
let fold_dnf ~conj ~disj sjn (xs, conjuncts) disjuncts =
let rec add_disjunct pending_splits sjn (xs, conjuncts) disjuncts =
let ys, sjn = bind_exists sjn ~wrt:xs in
let xs = Var.Set.union ys xs in
let djns = sjn.djns in
let sjn = {sjn with djns= []} in
split_case
(List.rev_append djns pending_splits)
(xs, conj sjn conjuncts)
disjuncts
and split_case pending_splits (xs, conjuncts) disjuncts =
match pending_splits with
| split :: pending_splits ->
List.fold split ~init:disjuncts ~f:(fun disjuncts sjn ->
add_disjunct pending_splits sjn (xs, conjuncts) disjuncts )
| [] -> disj (xs, conjuncts) disjuncts
in
add_disjunct [] sjn (xs, conjuncts) disjuncts
let dnf q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
let conj sjn conjuncts = sjn :: conjuncts in
let disj (xs, conjuncts) disjuncts =
exists xs (starN conjuncts) :: disjuncts
in
fold_dnf ~conj ~disj q (Var.Set.empty, []) []
|>
[%Trace.retn fun {pf} -> pf "%a" pp_djn]
(** Simplify *)
let rec norm_ s q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Equality.Subst.pp s pp_raw q]
;
let q =
map q ~f_sjn:(norm_ s) ~f_cong:Fn.id ~f_trm:(Equality.Subst.subst s)
in
let xs, cong = Equality.apply_subst (Var.Set.union q.us q.xs) s q.cong in
exists_fresh xs {q with cong}
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp_raw q' ; invariant q']
let norm s q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Equality.Subst.pp s pp_raw q]
;
(if Equality.Subst.is_empty s then q else norm_ s q)
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp_raw q' ; invariant q']
(** rename existentially quantified variables to avoid shadowing, and reduce
quantifier scopes by sinking them as low as possible into disjunctions *)
let rec freshen_nested_xs q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
(* trim xs to those that appear in the stem and sink the rest *)
let fv_stem = fv {q with xs= Var.Set.empty; djns= []} in
let xs_sink, xs = Var.Set.diff_inter q.xs fv_stem in
let xs_below, djns =
List.fold_map ~init:Var.Set.empty q.djns ~f:(fun xs_below djn ->
List.fold_map ~init:xs_below djn ~f:(fun xs_below dj ->
(* quantify xs not in stem and freshen disjunct *)
let dj' =
freshen_nested_xs (exists (Var.Set.inter xs_sink dj.us) dj)
in
let xs_below' = Var.Set.union xs_below dj'.xs in
(xs_below', dj') ) )
in
(* rename xs to miss all xs in subformulas *)
freshen_xs {q with xs; djns} ~wrt:(Var.Set.union q.us xs_below)
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp q' ; invariant q']
let rec propagate_equality_ ancestor_vs ancestor_cong q =
[%Trace.call fun {pf} ->
pf "(%a)@ %a" Equality.pp_classes ancestor_cong pp q]
;
(* extend vocabulary with variables in scope above *)
let ancestor_vs = Var.Set.union ancestor_vs (Var.Set.union q.us q.xs) in
(* decompose formula *)
let xs, stem, djns =
(q.xs, {q with us= ancestor_vs; xs= emp.xs; djns= emp.djns}, q.djns)
in
(* strengthen equality relation with that from above *)
let ancestor_stem = and_cong_ ancestor_cong stem in
let ancestor_cong = ancestor_stem.cong in
exists xs
(List.fold djns ~init:ancestor_stem ~f:(fun q' djn ->
let dj_congs, djn =
List.rev_map_unzip djn ~f:(fun dj ->
let dj = propagate_equality_ ancestor_vs ancestor_cong dj in
(dj.cong, dj) )
in
let new_xs, djn_cong = Equality.orN ancestor_vs dj_congs in
(* hoist xs appearing in disjunction's equality relation *)
let djn_xs = Var.Set.diff (Equality.fv djn_cong) q'.us in
let djn = List.map ~f:(elim_exists djn_xs) djn in
let cong_djn = and_cong_ djn_cong (orN djn) in
assert (is_false cong_djn || Var.Set.is_subset new_xs ~of_:djn_xs) ;
star (exists djn_xs cong_djn) q' ))
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp q' ; invariant q']
let propagate_equality ancestor_vs ancestor_cong q =
[%Trace.call fun {pf} ->
pf "(%a)@ %a" Equality.pp_classes ancestor_cong pp q]
;
propagate_equality_ ancestor_vs ancestor_cong q
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp q' ; invariant q']
let pp_vss fs vss =
Format.fprintf fs "[@[%a@]]"
(List.pp ";@ " (fun fs vs -> Format.fprintf fs "{@[%a@]}" Var.Set.pp vs))
vss
let remove_absent_xs ks q =
let ks = Var.Set.inter ks q.xs in
if Var.Set.is_empty ks then q
else
let xs = Var.Set.diff q.xs ks in
let cong = Equality.elim ks q.cong in
let djns =
let rec trim_ks ks djns =
List.map djns ~f:(fun djn ->
List.map djn ~f:(fun sjn ->
{ sjn with
us= Var.Set.diff sjn.us ks
; cong= Equality.elim ks sjn.cong
; djns= trim_ks ks sjn.djns } ) )
in
trim_ks ks q.djns
in
{q with xs; cong; djns}
let rec simplify_ us rev_xss q =
[%Trace.call fun {pf} -> pf "%a@ %a" pp_vss (List.rev rev_xss) pp_raw q]
;
let rev_xss = q.xs :: rev_xss in
(* recursively simplify subformulas *)
let q =
exists q.xs
(starN
( {q with us= Var.Set.union q.us q.xs; xs= emp.xs; djns= []}
:: List.map q.djns ~f:(fun djn ->
orN (List.map djn ~f:(fun sjn -> simplify_ us rev_xss sjn))
) ))
in
(* try to solve equations in cong for variables in xss *)
let subst = Equality.solve_for_vars (us :: List.rev rev_xss) q.cong in
(* simplification can reveal inconsistency *)
( if is_false q then false_ q.us
else if Equality.Subst.is_empty subst then q
else
(* normalize wrt solutions *)
let q = norm subst q in
(* reconjoin only non-redundant equations *)
let removed =
Var.Set.diff
(Var.Set.union_list rev_xss)
(fv ~ignore_cong:() (elim_exists q.xs q))
in
let keep, removed, _ = Equality.Subst.partition_valid removed subst in
let q = and_subst keep q in
(* remove the eliminated variables from xs and subformulas' us *)
remove_absent_xs removed q )
|>
[%Trace.retn fun {pf} q' ->
pf "%a@ %a" Equality.Subst.pp subst pp_raw q' ;
invariant q']
let simplify q =
[%Trace.call fun {pf} -> pf "%a" pp_raw q]
;
let q = freshen_nested_xs q in
let q = propagate_equality Var.Set.empty Equality.true_ q in
let q = simplify_ q.us [] q in
q
|>
[%Trace.retn fun {pf} q' -> pf "@\n" ; invariant q']