|
|
|
|
@ -0,0 +1,243 @@
|
|
|
|
|
## 一、选择题,共六道,每题3分,共18分
|
|
|
|
|
|
|
|
|
|
1. 设 $A$ 为 $n$ 阶对称矩阵,$B$ 为 $n$ 阶反对称矩阵,下列矩阵中为反对称矩阵的是【 】
|
|
|
|
|
|
|
|
|
|
(A) $AB - BA$;
|
|
|
|
|
(B) $AB + BA$;
|
|
|
|
|
(C) $BAB$;
|
|
|
|
|
(D) $(AB)^2$.
|
|
|
|
|
|
|
|
|
|
2. 设 $e_1, e_2$ 和 $\varepsilon_1, \varepsilon_2$ 是线性空间 $\mathbb{R}^2$ 的两组基,并且已知关系式
|
|
|
|
|
$$
|
|
|
|
|
\varepsilon_1 = e_1 + 5e_2,\quad \varepsilon_2 = e_2,
|
|
|
|
|
$$
|
|
|
|
|
则由基 $e_1, e_2$ 到基 $\varepsilon_1, \varepsilon_2$ 的过渡矩阵是
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
(A) \begin{bmatrix}
|
|
|
|
|
-1 & 0 \\
|
|
|
|
|
5 & -1
|
|
|
|
|
\end{bmatrix} \quad
|
|
|
|
|
(B) \begin{bmatrix}
|
|
|
|
|
0 & -1 \\
|
|
|
|
|
-6 & 0
|
|
|
|
|
\end{bmatrix} \quad
|
|
|
|
|
(C) \begin{bmatrix}
|
|
|
|
|
1 & 0 \\
|
|
|
|
|
-5 & -1
|
|
|
|
|
\end{bmatrix} \quad
|
|
|
|
|
(D) \begin{bmatrix}
|
|
|
|
|
1 & 0 \\
|
|
|
|
|
-5 & 1
|
|
|
|
|
\end{bmatrix}.
|
|
|
|
|
$$
|
|
|
|
|
3. 设向量组
|
|
|
|
|
$$
|
|
|
|
|
\alpha_1 = (0, 0, c_1)^T,\quad
|
|
|
|
|
\alpha_2 = (0, 1, c_2)^T,\quad
|
|
|
|
|
\alpha_3 = (1, -1, c_3)^T,\quad
|
|
|
|
|
\alpha_4 = (-1, 1, c_4)^T,
|
|
|
|
|
$$
|
|
|
|
|
其中 $c_1, c_2, c_3, c_4$ 为任意常数,则下列向量组线性相关的是【 】
|
|
|
|
|
|
|
|
|
|
(A) $\alpha_1, \alpha_2, \alpha_3$;
|
|
|
|
|
(B) $\alpha_1, \alpha_2, \alpha_4$;
|
|
|
|
|
(C) $\alpha_1, \alpha_3, \alpha_4$;
|
|
|
|
|
(D) $\alpha_2, \alpha_3, \alpha_4$.
|
|
|
|
|
|
|
|
|
|
4. 设 $A, B$ 为 $n$ 阶矩阵,则【 】
|
|
|
|
|
|
|
|
|
|
(A) $\text{rank}[A \ AB] = \text{rank} A$;
|
|
|
|
|
(B) $\text{rank}[A \ BA] = \text{rank} A$;
|
|
|
|
|
(C) $\text{rank}[A \ B] = \max\{\text{rank} A, \text{rank} B\}$;
|
|
|
|
|
(D) $\text{rank}[A \ B] = \text{rank}[A^T \ B^T]$.
|
|
|
|
|
|
|
|
|
|
5. 设 $A$ 可逆,将 $A$ 的第一列加上第二列的 2 倍得到 $B$,则 $A^*$ 与 $B^*$ 满足【 】
|
|
|
|
|
|
|
|
|
|
(A) 将 $A^*$ 的第一列加上第二列的 2 倍得到 $B^*$;
|
|
|
|
|
(B) 将 $A^*$ 的第一行加上第二行的 2 倍得到 $B^*$;
|
|
|
|
|
(C) 将 $A^*$ 的第二列加上第一列的 $(-2)$ 倍得到 $B^*$;
|
|
|
|
|
(D) 将 $A^*$ 的第二行加上第一行的 $(-2)$ 倍得到 $B^*$.
|
|
|
|
|
|
|
|
|
|
6. 已知方程组
|
|
|
|
|
$$
|
|
|
|
|
\text{(I)} \quad
|
|
|
|
|
\begin{cases}
|
|
|
|
|
x_1 + 2x_2 + 3x_3 = 0, \\
|
|
|
|
|
2x_1 + 3x_2 + 5x_3 = 0, \\
|
|
|
|
|
x_1 + x_2 + ax_3 = 0,
|
|
|
|
|
\end{cases}
|
|
|
|
|
$$
|
|
|
|
|
与
|
|
|
|
|
$$
|
|
|
|
|
\text{(II)} \quad
|
|
|
|
|
\begin{cases}
|
|
|
|
|
x_1 + bx_2 + cx_3 = 0, \\
|
|
|
|
|
2x_1 + b^2x_2 + (c+1)x_3 = 0
|
|
|
|
|
\end{cases}
|
|
|
|
|
$$
|
|
|
|
|
同解,则【 】
|
|
|
|
|
|
|
|
|
|
(A) $a = 1, b = 0, c = 1$;
|
|
|
|
|
(B) $a = 1, b = 1, c = 2$;
|
|
|
|
|
(C) $a = 2, b = 0, c = 1$;
|
|
|
|
|
(D) $a = 2, b = 1, c = 2$.
|
|
|
|
|
|
|
|
|
|
## 二、填空题,共六道,每题3分,共18分
|
|
|
|
|
|
|
|
|
|
7. 已知向量 $\alpha_1 = (1,0,-1,0)^T$,$\alpha_2 = (1,1,-1,-1)^T$,$\alpha_3 = (-1,0,1,1)^T$,则向量 $\alpha_1 + 2\alpha_2$ 与 $2\alpha_1 + \alpha_3$ 的内积
|
|
|
|
|
$$
|
|
|
|
|
\langle \alpha_1 + 2\alpha_2,\, 2\alpha_1 + \alpha_3 \rangle = \underline{\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
8. 设2阶矩阵A=$\begin{bmatrix}3&-1\\-9&3\end{bmatrix}$,n为正整数,则$A^n=\underline{\quad\quad}$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解析:
|
|
|
|
|
步骤1:分析矩阵A的幂次规律
|
|
|
|
|
先计算$A^2$:
|
|
|
|
|
|
|
|
|
|
$$A^2 = \begin{bmatrix}3&-1\\-9&3\end{bmatrix}\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = \begin{bmatrix}3\times3 + (-1)\times(-9)&3\times(-1) + (-1)\times3\\-9\times3 + 3\times(-9)&-9\times(-1) + 3\times3\end{bmatrix} = \begin{bmatrix}18&-6\\-54&18\end{bmatrix} = 6\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = 6A$$
|
|
|
|
|
|
|
|
|
|
由此递推:
|
|
|
|
|
- $$A^3 = A^2 \cdot A = 6A \cdot A = 6A^2 = 6\times6A = 6^2A$$
|
|
|
|
|
- 归纳可得当$n \geq 1$时,$A^n = 6^{n-1}A$
|
|
|
|
|
|
|
|
|
|
步骤2:写出最终表达式
|
|
|
|
|
|
|
|
|
|
将A代入得:
|
|
|
|
|
$$A^n = 6^{n-1}\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = \begin{bmatrix}3\times6^{n-1}&-6^{n-1}\\-9\times6^{n-1}&3\times6^{n-1}\end{bmatrix}$$
|
|
|
|
|
|
|
|
|
|
答案:$$\boldsymbol{6^{n-1}\begin{bmatrix}3&-1\\-9&3\end{bmatrix}}$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9. 若向量组
|
|
|
|
|
$$
|
|
|
|
|
\alpha_1 = (1,0,1)^T,\quad \alpha_2 = (0,1,1)^T,\quad \alpha_3 = (1,3,5)^T
|
|
|
|
|
$$
|
|
|
|
|
不能由向量组
|
|
|
|
|
$$
|
|
|
|
|
\beta_1 = (1,1,1)^T,\quad \beta_2 = (1,2,3)^T,\quad \beta_3 = (3,4,a)^T
|
|
|
|
|
$$
|
|
|
|
|
线性表示,则
|
|
|
|
|
$$
|
|
|
|
|
a = \underline{\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
10. 设矩阵
|
|
|
|
|
$$
|
|
|
|
|
A = \begin{bmatrix}
|
|
|
|
|
1 & a_1 & a_1^2 & a_1^3 \\
|
|
|
|
|
1 & a_2 & a_2^2 & a_2^3 \\
|
|
|
|
|
1 & a_3 & a_3^2 & a_3^3 \\
|
|
|
|
|
1 & a_4 & a_4^2 & a_4^3
|
|
|
|
|
\end{bmatrix},\quad
|
|
|
|
|
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},\quad
|
|
|
|
|
b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},
|
|
|
|
|
$$
|
|
|
|
|
其中常数 $a_1, a_2, a_3, a_4$ 互不相等,则线性方程组 $Ax = b$ 的解为
|
|
|
|
|
$$
|
|
|
|
|
\underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
11. 若 $n$ 阶实对称矩阵 $A$ 的特征值为
|
|
|
|
|
$$
|
|
|
|
|
\lambda_i = (-1)^i \quad (i=1,2,\dots,n),
|
|
|
|
|
$$
|
|
|
|
|
则
|
|
|
|
|
$$
|
|
|
|
|
A^{100} = \underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
12. 设 $n$ 阶矩阵 $A = [a_{ij}]_{n \times n}$,则二次型
|
|
|
|
|
$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n)^2$
|
|
|
|
|
的矩阵为
|
|
|
|
|
$$
|
|
|
|
|
\underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
13. (10 分)计算 下面两个$n$ 阶行列式
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
D_n = \begin{vmatrix}
|
|
|
|
|
1 & 2 & 3 & \cdots & n-1 & n \\
|
|
|
|
|
2 & 1 & 2 & \cdots & n-2 & n-1 \\
|
|
|
|
|
3 & 2 & 1 & \cdots & n-3 & n-2 \\
|
|
|
|
|
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
|
|
|
|
|
n-1 & n-2 & n-3 & \cdots & 1 & 2 \\
|
|
|
|
|
n & n-1 & n-2 & \cdots & 2 & 1
|
|
|
|
|
\end{vmatrix}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\begin{vmatrix}
|
|
|
|
|
1+x_1 & 1+x_1^2 & \cdots & 1+x_1^n \\
|
|
|
|
|
1+x_2 & 1+x_2^2 & \cdots & 1+x_2^n \\
|
|
|
|
|
\vdots & \vdots & \ddots & \vdots \\
|
|
|
|
|
1+x_n & 1+x_n^2 & \cdots & 1+x_n^n
|
|
|
|
|
\end{vmatrix}
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14. (10 分)设
|
|
|
|
|
$$
|
|
|
|
|
\alpha_1 = (1,0,-1)^T,\quad \alpha_2 = (2,1,1)^T,\quad \alpha_3 = (1,1,1)^T
|
|
|
|
|
$$
|
|
|
|
|
和
|
|
|
|
|
$$
|
|
|
|
|
\beta_1 = (0,1,1)^T,\quad \beta_2 = (-1,1,0)^T,\quad \beta_3 = (0,2,1)^T
|
|
|
|
|
$$
|
|
|
|
|
是 $\mathbb{R}^3$ 的两组基,求向量
|
|
|
|
|
$$
|
|
|
|
|
u = \alpha_1 + 2\alpha_2 - 3\alpha_3
|
|
|
|
|
$$
|
|
|
|
|
在基 $\beta_1, \beta_2, \beta_3$ 下的坐标。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15. (12 分)设 $n$ 阶方阵 $A, B$ 满足 $AB = A + B$。
|
|
|
|
|
|
|
|
|
|
(1)证明 $A - E$ 可逆;
|
|
|
|
|
|
|
|
|
|
(2)证明 $AB = BA$;
|
|
|
|
|
|
|
|
|
|
(3)证明 $\mathrm{rank}(A) = \mathrm{rank}(B)$;
|
|
|
|
|
|
|
|
|
|
(4)若矩阵
|
|
|
|
|
$$
|
|
|
|
|
B = \begin{bmatrix}
|
|
|
|
|
1 & -3 & 0 \\
|
|
|
|
|
2 & 1 & 0 \\
|
|
|
|
|
0 & 0 & 2
|
|
|
|
|
\end{bmatrix},
|
|
|
|
|
$$
|
|
|
|
|
求矩阵 $A$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16. 设矩阵$A=\begin{bmatrix}1&2&1&2\\0&1&t&t\\1&t&0&1\end{bmatrix}$,齐次线性方程组Ax=0的基础解系中含有两个解向量,求Ax=0的通解。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解析:
|
|
|
|
|
因为n=4,$n-\text{rank}A=2$,所以$\text{rank}A=2$。
|
|
|
|
|
对A施行初等行变换,得
|
|
|
|
|
$$A=\begin{bmatrix}1&2&1&2\\0&1&t&t\\1&t&0&1\end{bmatrix}\to\begin{bmatrix}1&2&1&2\\0&1&t&t\\0&t-2&-1&-1\end{bmatrix}$$
|
|
|
|
|
|
|
|
|
|
$$\to\begin{bmatrix}1&2&1&2\\0&1&t&t\\0&0&-(1-t)^2&-(1-t)^2\end{bmatrix}\to\begin{bmatrix}1&0&1-2t&2-2t\\0&1&t&t\\0&0&-(1-t)^2&-(1-t)^2\end{bmatrix}$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
要使$\text{rank}A=2$,则必有t=1。
|
|
|
|
|
此时,与Ax=0同解的方程组为$\begin{cases}x_1=x_3\\x_2=-x_3-x_4\end{cases}$,得基础解系为
|
|
|
|
|
$$\boldsymbol{\xi}_1=\begin{bmatrix}1\\-1\\1\\0\end{bmatrix},\ \boldsymbol{\xi}_2=\begin{bmatrix}0\\-1\\0\\1\end{bmatrix}$$
|
|
|
|
|
方程组的通解为$$\boldsymbol{x}=k_1\boldsymbol{\xi}_1+k_2\boldsymbol{\xi}_2,(k_1,k_2为任意常数)$$
|