vault backup: 2025-12-29 20:54:41

develop
王轲楠 2 weeks ago
commit 025b05cb30

@ -0,0 +1,243 @@
## 一、选择题共六道每题3分共18分
1. 设 $A$ 为 $n$ 阶对称矩阵,$B$ 为 $n$ 阶反对称矩阵,下列矩阵中为反对称矩阵的是【 】
(A) $AB - BA$;
(B) $AB + BA$;
(C) $BAB$;
(D) $(AB)^2$.
2.  设 $e_1, e_2$ 和 $\varepsilon_1, \varepsilon_2$ 是线性空间 $\mathbb{R}^2$ 的两组基,并且已知关系式
$$
\varepsilon_1 = e_1 + 5e_2,\quad \varepsilon_2 = e_2,
$$
则由基 $e_1, e_2$ 到基 $\varepsilon_1, \varepsilon_2$ 的过渡矩阵是
$$
(A) \begin{bmatrix}
-1 & 0 \\
5 & -1
\end{bmatrix} \quad
(B) \begin{bmatrix}
0 & -1 \\
-6 & 0
\end{bmatrix} \quad
(C) \begin{bmatrix}
1 & 0 \\
-5 & -1
\end{bmatrix} \quad
(D) \begin{bmatrix}
1 & 0 \\
-5 & 1
\end{bmatrix}.
$$
3. 设向量组
$$
\alpha_1 = (0, 0, c_1)^T,\quad
\alpha_2 = (0, 1, c_2)^T,\quad
\alpha_3 = (1, -1, c_3)^T,\quad
\alpha_4 = (-1, 1, c_4)^T,
$$
其中 $c_1, c_2, c_3, c_4$ 为任意常数,则下列向量组线性相关的是【 】
(A) $\alpha_1, \alpha_2, \alpha_3$;
(B) $\alpha_1, \alpha_2, \alpha_4$;
(C) $\alpha_1, \alpha_3, \alpha_4$;
(D) $\alpha_2, \alpha_3, \alpha_4$.
4. 设 $A, B$ 为 $n$ 阶矩阵,则【 】
(A) $\text{rank}[A \ AB] = \text{rank} A$;
(B) $\text{rank}[A \ BA] = \text{rank} A$;
(C) $\text{rank}[A \ B] = \max\{\text{rank} A, \text{rank} B\}$;
(D) $\text{rank}[A \ B] = \text{rank}[A^T \ B^T]$.
5. 设 $A$ 可逆,将 $A$ 的第一列加上第二列的 2 倍得到 $B$,则 $A^*$ 与 $B^*$ 满足【 】
(A) 将 $A^*$ 的第一列加上第二列的 2 倍得到 $B^*$;
(B) 将 $A^*$ 的第一行加上第二行的 2 倍得到 $B^*$;
(C) 将 $A^*$ 的第二列加上第一列的 $(-2)$ 倍得到 $B^*$;
(D) 将 $A^*$ 的第二行加上第一行的 $(-2)$ 倍得到 $B^*$.
6. 已知方程组
$$
\text{(I)} \quad
\begin{cases}
x_1 + 2x_2 + 3x_3 = 0, \\
2x_1 + 3x_2 + 5x_3 = 0, \\
x_1 + x_2 + ax_3 = 0,
\end{cases}
$$
$$
\text{(II)} \quad
\begin{cases}
x_1 + bx_2 + cx_3 = 0, \\
2x_1 + b^2x_2 + (c+1)x_3 = 0
\end{cases}
$$
同解,则【 】
(A) $a = 1, b = 0, c = 1$;
(B) $a = 1, b = 1, c = 2$;
(C) $a = 2, b = 0, c = 1$;
(D) $a = 2, b = 1, c = 2$.
## 二、填空题共六道每题3分共18分
7. 已知向量 $\alpha_1 = (1,0,-1,0)^T$$\alpha_2 = (1,1,-1,-1)^T$$\alpha_3 = (-1,0,1,1)^T$,则向量 $\alpha_1 + 2\alpha_2$ 与 $2\alpha_1 + \alpha_3$ 的内积
$$
\langle \alpha_1 + 2\alpha_2,\, 2\alpha_1 + \alpha_3 \rangle = \underline{\qquad\qquad}.
$$
8. 设2阶矩阵A=$\begin{bmatrix}3&-1\\-9&3\end{bmatrix}$n为正整数则$A^n=\underline{\quad\quad}$。
解析:
步骤1分析矩阵A的幂次规律
先计算$A^2$
$$A^2 = \begin{bmatrix}3&-1\\-9&3\end{bmatrix}\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = \begin{bmatrix}3\times3 + (-1)\times(-9)&3\times(-1) + (-1)\times3\\-9\times3 + 3\times(-9)&-9\times(-1) + 3\times3\end{bmatrix} = \begin{bmatrix}18&-6\\-54&18\end{bmatrix} = 6\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = 6A$$
由此递推:
- $$A^3 = A^2 \cdot A = 6A \cdot A = 6A^2 = 6\times6A = 6^2A$$
- 归纳可得当$n \geq 1$时,$A^n = 6^{n-1}A$
步骤2写出最终表达式
将A代入得
$$A^n = 6^{n-1}\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = \begin{bmatrix}3\times6^{n-1}&-6^{n-1}\\-9\times6^{n-1}&3\times6^{n-1}\end{bmatrix}$$
答案:$$\boldsymbol{6^{n-1}\begin{bmatrix}3&-1\\-9&3\end{bmatrix}}$$
9. 若向量组
$$
\alpha_1 = (1,0,1)^T,\quad \alpha_2 = (0,1,1)^T,\quad \alpha_3 = (1,3,5)^T
$$
不能由向量组
$$
\beta_1 = (1,1,1)^T,\quad \beta_2 = (1,2,3)^T,\quad \beta_3 = (3,4,a)^T
$$
线性表示,则
$$
a = \underline{\qquad\qquad}.
$$
10. 设矩阵
$$
A = \begin{bmatrix}
1 & a_1 & a_1^2 & a_1^3 \\
1 & a_2 & a_2^2 & a_2^3 \\
1 & a_3 & a_3^2 & a_3^3 \\
1 & a_4 & a_4^2 & a_4^3
\end{bmatrix},\quad
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},\quad
b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},
$$
其中常数 $a_1, a_2, a_3, a_4$ 互不相等,则线性方程组 $Ax = b$ 的解为
$$
\underline{\qquad\qquad\qquad\qquad}.
$$
11. 若 $n$ 阶实对称矩阵 $A$ 的特征值为
$$
\lambda_i = (-1)^i \quad (i=1,2,\dots,n),
$$
$$
A^{100} = \underline{\qquad\qquad\qquad\qquad}.
$$
12. 设 $n$ 阶矩阵 $A = [a_{ij}]_{n \times n}$,则二次型
$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n)^2$
的矩阵为
$$
\underline{\qquad\qquad\qquad\qquad}.
$$
13. 10 分)计算 下面两个$n$ 阶行列式
$$
D_n = \begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n \\
2 & 1 & 2 & \cdots & n-2 & n-1 \\
3 & 2 & 1 & \cdots & n-3 & n-2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
n-1 & n-2 & n-3 & \cdots & 1 & 2 \\
n & n-1 & n-2 & \cdots & 2 & 1
\end{vmatrix}.
$$
$$
\begin{vmatrix}
1+x_1 & 1+x_1^2 & \cdots & 1+x_1^n \\
1+x_2 & 1+x_2^2 & \cdots & 1+x_2^n \\
\vdots & \vdots & \ddots & \vdots \\
1+x_n & 1+x_n^2 & \cdots & 1+x_n^n
\end{vmatrix}
$$
14. 10 分)设
$$
\alpha_1 = (1,0,-1)^T,\quad \alpha_2 = (2,1,1)^T,\quad \alpha_3 = (1,1,1)^T
$$
$$
\beta_1 = (0,1,1)^T,\quad \beta_2 = (-1,1,0)^T,\quad \beta_3 = (0,2,1)^T
$$
是 $\mathbb{R}^3$ 的两组基,求向量
$$
u = \alpha_1 + 2\alpha_2 - 3\alpha_3
$$
在基 $\beta_1, \beta_2, \beta_3$ 下的坐标。
15. 12 分)设 $n$ 阶方阵 $A, B$ 满足 $AB = A + B$。
1证明 $A - E$ 可逆;
2证明 $AB = BA$
3证明 $\mathrm{rank}(A) = \mathrm{rank}(B)$
4若矩阵
$$
B = \begin{bmatrix}
1 & -3 & 0 \\
2 & 1 & 0 \\
0 & 0 & 2
\end{bmatrix},
$$
求矩阵 $A$。
16. 设矩阵$A=\begin{bmatrix}1&2&1&2\\0&1&t&t\\1&t&0&1\end{bmatrix}$齐次线性方程组Ax=0的基础解系中含有两个解向量求Ax=0的通解。
解析:
因为n=4$n-\text{rank}A=2$,所以$\text{rank}A=2$。
对A施行初等行变换
$$A=\begin{bmatrix}1&2&1&2\\0&1&t&t\\1&t&0&1\end{bmatrix}\to\begin{bmatrix}1&2&1&2\\0&1&t&t\\0&t-2&-1&-1\end{bmatrix}$$
$$\to\begin{bmatrix}1&2&1&2\\0&1&t&t\\0&0&-(1-t)^2&-(1-t)^2\end{bmatrix}\to\begin{bmatrix}1&0&1-2t&2-2t\\0&1&t&t\\0&0&-(1-t)^2&-(1-t)^2\end{bmatrix}$$
要使$\text{rank}A=2$则必有t=1。
此时与Ax=0同解的方程组为$\begin{cases}x_1=x_3\\x_2=-x_3-x_4\end{cases}$,得基础解系为
$$\boldsymbol{\xi}_1=\begin{bmatrix}1\\-1\\1\\0\end{bmatrix},\ \boldsymbol{\xi}_2=\begin{bmatrix}0\\-1\\0\\1\end{bmatrix}$$
方程组的通解为$$\boldsymbol{x}=k_1\boldsymbol{\xi}_1+k_2\boldsymbol{\xi}_2k_1,k_2为任意常数$$

@ -120,6 +120,3 @@
\underline{\qquad\qquad\qquad\qquad}.
$$
设$A=\begin{bmatrix}1 & -1 & 0 & -1 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 2 & 6\end{bmatrix},B=\begin{bmatrix}1 & 0 & 1 & 2 \\ 1 & -1 & a & a-1 \\ 2 & -3 & 2 & -2\end{bmatrix}$,向量$\alpha=\begin{bmatrix}0\\2\\3\end{bmatrix},\beta=\begin{bmatrix}1\\0\\-1\end{bmatrix}$.
(1)证明:方程组$Ax=\alpha$的解均为方程组$Bx=\beta$的解;
(2)若方程组$Ax=\alpha$与方程组$Bx=\beta$不同解,求$a$的值.

Loading…
Cancel
Save