|
|
|
@ -6,304 +6,342 @@ import numpy as np
|
|
|
|
|
import tkinter as tk
|
|
|
|
|
from tkinter import ttk
|
|
|
|
|
from PIL import ImageTk, Image
|
|
|
|
|
from tkinter import filedialog
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt显示彩色图片
|
|
|
|
|
def plt_show0(img):
|
|
|
|
|
# cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]
|
|
|
|
|
b, g, r = cv2.split(img)
|
|
|
|
|
img = cv2.merge([r, g, b])
|
|
|
|
|
plt.imshow(img)
|
|
|
|
|
plt.show()
|
|
|
|
|
def eaowej(file_path):
|
|
|
|
|
global history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt显示灰度图片
|
|
|
|
|
def plt_show(img):
|
|
|
|
|
plt.imshow(img, cmap='gray')
|
|
|
|
|
plt.show()
|
|
|
|
|
# plt显示灰度图片
|
|
|
|
|
def plt_show(img):
|
|
|
|
|
plt.imshow(img, cmap='gray')
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 图像去噪灰度处理
|
|
|
|
|
def gray_guss(image):
|
|
|
|
|
image = cv2.GaussianBlur(image, (3, 3), 0)
|
|
|
|
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
return gray_image
|
|
|
|
|
# 图像去噪灰度处理
|
|
|
|
|
def gray_guss(image):
|
|
|
|
|
image = cv2.GaussianBlur(image, (3, 3), 0)
|
|
|
|
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
return gray_image
|
|
|
|
|
|
|
|
|
|
# 读取待检测图片
|
|
|
|
|
origin_image = cv2.imread('../xiangA.jpg')
|
|
|
|
|
# 读取待检测图片
|
|
|
|
|
origin_image = cv2.imread(file_path)
|
|
|
|
|
|
|
|
|
|
# 复制一张图片,在复制图上进行图像操作,保留原图
|
|
|
|
|
image = origin_image.copy()
|
|
|
|
|
# 复制一张图片,在复制图上进行图像操作,保留原图
|
|
|
|
|
image = origin_image.copy()
|
|
|
|
|
|
|
|
|
|
# 图像去噪灰度处理
|
|
|
|
|
gray_image = gray_guss(image)
|
|
|
|
|
# 图像去噪灰度处理
|
|
|
|
|
gray_image = gray_guss(image)
|
|
|
|
|
|
|
|
|
|
# x方向上的边缘检测(增强边缘信息)
|
|
|
|
|
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
|
|
|
|
|
absX = cv2.convertScaleAbs(Sobel_x)
|
|
|
|
|
image = absX
|
|
|
|
|
# x方向上的边缘检测(增强边缘信息)
|
|
|
|
|
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
|
|
|
|
|
absX = cv2.convertScaleAbs(Sobel_x)
|
|
|
|
|
image = absX
|
|
|
|
|
|
|
|
|
|
# 图像阈值化操作——获得二值化图
|
|
|
|
|
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
|
|
|
|
|
# 图像阈值化操作——获得二值化图
|
|
|
|
|
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
|
|
|
|
|
|
|
|
|
|
# 显示灰度图像
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
|
|
|
|
|
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
|
|
|
|
|
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
|
|
|
|
|
|
|
|
|
|
# 显示灰度图像
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 腐蚀(erode)和膨胀(dilate)
|
|
|
|
|
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
|
|
|
|
|
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
|
|
|
|
|
|
|
|
|
|
#x方向进行闭操作(抑制暗细节)
|
|
|
|
|
image = cv2.dilate(image, kernelX)
|
|
|
|
|
image = cv2.erode(image, kernelX)
|
|
|
|
|
|
|
|
|
|
#y方向的开操作
|
|
|
|
|
image = cv2.erode(image, kernelY)
|
|
|
|
|
image = cv2.dilate(image, kernelY)
|
|
|
|
|
|
|
|
|
|
# 中值滤波(去噪)
|
|
|
|
|
image = cv2.medianBlur(image, 21)
|
|
|
|
|
|
|
|
|
|
# 显示灰度图像
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 获得轮廓
|
|
|
|
|
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
for item in contours:
|
|
|
|
|
rect = cv2.boundingRect(item)
|
|
|
|
|
x = rect[0]
|
|
|
|
|
y = rect[1]
|
|
|
|
|
weight = rect[2]
|
|
|
|
|
height = rect[3]
|
|
|
|
|
# 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
|
|
|
|
|
if (weight > (height * 3.5)) and (weight < (height * 4)):
|
|
|
|
|
image = origin_image[y:y + height, x:x + weight]
|
|
|
|
|
plt_show0(image)
|
|
|
|
|
|
|
|
|
|
#车牌字符分割
|
|
|
|
|
# 图像去噪灰度处理
|
|
|
|
|
gray_image = gray_guss(image)
|
|
|
|
|
|
|
|
|
|
# 图像阈值化操作——获得二值化图
|
|
|
|
|
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
#膨胀操作,使“津”字膨胀为一个近似的整体,为分割做准备
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
|
|
|
|
|
image = cv2.dilate(image, kernel)
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 查找轮廓
|
|
|
|
|
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
words = []
|
|
|
|
|
word_images = []
|
|
|
|
|
|
|
|
|
|
#对所有轮廓逐一操作
|
|
|
|
|
for item in contours:
|
|
|
|
|
word = []
|
|
|
|
|
rect = cv2.boundingRect(item)
|
|
|
|
|
x = rect[0]
|
|
|
|
|
y = rect[1]
|
|
|
|
|
weight = rect[2]
|
|
|
|
|
height = rect[3]
|
|
|
|
|
|
|
|
|
|
word.append(x)
|
|
|
|
|
|
|
|
|
|
word.append(y)
|
|
|
|
|
|
|
|
|
|
word.append(weight)
|
|
|
|
|
|
|
|
|
|
word.append(height)
|
|
|
|
|
|
|
|
|
|
words.append(word)
|
|
|
|
|
|
|
|
|
|
# 排序,车牌号有顺序。words是一个嵌套列表
|
|
|
|
|
words = sorted(words,key=lambda s:s[0],reverse=False)
|
|
|
|
|
i = 0
|
|
|
|
|
|
|
|
|
|
#word中存放轮廓的起始点和宽高
|
|
|
|
|
for word in words:
|
|
|
|
|
# 筛选字符的轮廓
|
|
|
|
|
if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 3.5)) and (word[2] > 25):
|
|
|
|
|
i = i+1
|
|
|
|
|
splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
|
|
|
|
|
word_images.append(splite_image)
|
|
|
|
|
#print(i)
|
|
|
|
|
#print(words)
|
|
|
|
|
|
|
|
|
|
for i,j in enumerate(word_images):
|
|
|
|
|
plt.subplot(1,7,i+1)
|
|
|
|
|
plt.imshow(word_images[i],cmap='gray')
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
#模版匹配
|
|
|
|
|
# 准备模板(template[0-9]为数字模板;)
|
|
|
|
|
template = ['0','1','2','3','4','5','6','7','8','9',
|
|
|
|
|
'A','B','C','D','E','F','G','H','J','K',
|
|
|
|
|
'L','M','N','P','Q','R','S','T','U','V',
|
|
|
|
|
'W','X','Y','Z','藏','川','鄂','甘','赣',
|
|
|
|
|
'贵','桂','黑','沪','吉','冀','津','晋','京',
|
|
|
|
|
'辽','鲁','蒙','闽','宁','青','琼','陕','苏',
|
|
|
|
|
'皖','湘','新','渝','豫','粤','云','浙']
|
|
|
|
|
|
|
|
|
|
# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
|
|
|
|
|
def read_directory(directory_name):
|
|
|
|
|
referImg_list = []
|
|
|
|
|
for filename in os.listdir(directory_name):
|
|
|
|
|
referImg_list.append(directory_name + "/" + filename)
|
|
|
|
|
return referImg_list
|
|
|
|
|
|
|
|
|
|
# 获得中文模板列表(只匹配车牌的第一个字符)
|
|
|
|
|
def get_chinese_words_list():
|
|
|
|
|
chinese_words_list = []
|
|
|
|
|
for i in range(34,64):
|
|
|
|
|
#将模板存放在字典中
|
|
|
|
|
c_word = read_directory('./refer1/'+ template[i])
|
|
|
|
|
chinese_words_list.append(c_word)
|
|
|
|
|
return chinese_words_list
|
|
|
|
|
chinese_words_list = get_chinese_words_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获得英文模板列表(只匹配车牌的第二个字符)
|
|
|
|
|
def get_eng_words_list():
|
|
|
|
|
eng_words_list = []
|
|
|
|
|
for i in range(10,34):
|
|
|
|
|
e_word = read_directory('./refer1/'+ template[i])
|
|
|
|
|
eng_words_list.append(e_word)
|
|
|
|
|
return eng_words_list
|
|
|
|
|
eng_words_list = get_eng_words_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获得英文和数字模板列表(匹配车牌后面的字符)
|
|
|
|
|
def get_eng_num_words_list():
|
|
|
|
|
eng_num_words_list = []
|
|
|
|
|
for i in range(0,34):
|
|
|
|
|
word = read_directory('./refer1/'+ template[i])
|
|
|
|
|
eng_num_words_list.append(word)
|
|
|
|
|
return eng_num_words_list
|
|
|
|
|
eng_num_words_list = get_eng_num_words_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 读取一个模板地址与图片进行匹配,返回得分
|
|
|
|
|
def template_score(template,image):
|
|
|
|
|
#将模板进行格式转换
|
|
|
|
|
template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
|
|
|
|
|
template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
#模板图像阈值化处理——获得黑白图
|
|
|
|
|
ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
|
|
|
|
|
# height, width = template_img.shape
|
|
|
|
|
# image_ = image.copy()
|
|
|
|
|
# image_ = cv2.resize(image_, (width, height))
|
|
|
|
|
image_ = image.copy()
|
|
|
|
|
#获得待检测图片的尺寸
|
|
|
|
|
height, width = image_.shape
|
|
|
|
|
# 将模板resize至与图像一样大小
|
|
|
|
|
template_img = cv2.resize(template_img, (width, height))
|
|
|
|
|
# 模板匹配,返回匹配得分
|
|
|
|
|
result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
|
|
|
|
|
return result[0][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 对分割得到的字符逐一匹配
|
|
|
|
|
def template_matching(word_images):
|
|
|
|
|
results = []
|
|
|
|
|
for index,word_image in enumerate(word_images):
|
|
|
|
|
if index==0:
|
|
|
|
|
best_score = []
|
|
|
|
|
for chinese_words in chinese_words_list:
|
|
|
|
|
score = []
|
|
|
|
|
for chinese_word in chinese_words:
|
|
|
|
|
result = template_score(chinese_word,word_image)
|
|
|
|
|
score.append(result)
|
|
|
|
|
best_score.append(max(score))
|
|
|
|
|
i = best_score.index(max(best_score))
|
|
|
|
|
# print(template[34+i])
|
|
|
|
|
r = template[34+i]
|
|
|
|
|
results.append(r)
|
|
|
|
|
continue
|
|
|
|
|
if index==1:
|
|
|
|
|
best_score = []
|
|
|
|
|
for eng_word_list in eng_words_list:
|
|
|
|
|
score = []
|
|
|
|
|
for eng_word in eng_word_list:
|
|
|
|
|
result = template_score(eng_word,word_image)
|
|
|
|
|
score.append(result)
|
|
|
|
|
best_score.append(max(score))
|
|
|
|
|
i = best_score.index(max(best_score))
|
|
|
|
|
# print(template[10+i])
|
|
|
|
|
r = template[10+i]
|
|
|
|
|
results.append(r)
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
best_score = []
|
|
|
|
|
for eng_num_word_list in eng_num_words_list:
|
|
|
|
|
score = []
|
|
|
|
|
for eng_num_word in eng_num_word_list:
|
|
|
|
|
result = template_score(eng_num_word,word_image)
|
|
|
|
|
score.append(result)
|
|
|
|
|
best_score.append(max(score))
|
|
|
|
|
i = best_score.index(max(best_score))
|
|
|
|
|
# print(template[i])
|
|
|
|
|
r = template[i]
|
|
|
|
|
results.append(r)
|
|
|
|
|
continue
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
word_images_ = word_images.copy()
|
|
|
|
|
# 调用函数获得结果
|
|
|
|
|
|
|
|
|
|
result = template_matching(word_images_)
|
|
|
|
|
#print(result)
|
|
|
|
|
# "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
|
|
|
|
|
#print( "".join(result))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from PIL import ImageFont, ImageDraw, Image
|
|
|
|
|
|
|
|
|
|
height,weight = origin_image.shape[0:2]
|
|
|
|
|
#print(height)
|
|
|
|
|
#print(weight)
|
|
|
|
|
|
|
|
|
|
image_1 = origin_image.copy()
|
|
|
|
|
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
|
|
|
|
|
|
|
|
|
|
#设置需要显示的字体
|
|
|
|
|
fontpath = "font/simsun.ttc"
|
|
|
|
|
font = ImageFont.truetype(fontpath,64)
|
|
|
|
|
img_pil = Image.fromarray(image_1)
|
|
|
|
|
draw = ImageDraw.Draw(img_pil)
|
|
|
|
|
|
|
|
|
|
#绘制文字信息
|
|
|
|
|
draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
|
|
|
|
|
bk_img = np.array(img_pil)
|
|
|
|
|
#print(result)
|
|
|
|
|
print( "".join(result))
|
|
|
|
|
plt_show0(bk_img)
|
|
|
|
|
|
|
|
|
|
# 使用PIL将numpy数组转换为Image对象
|
|
|
|
|
image_tk = Image.fromarray(cv2.cvtColor(bk_img, cv2.COLOR_BGR2RGB))
|
|
|
|
|
|
|
|
|
|
# 初始化Tkinter窗口
|
|
|
|
|
root = tk.Tk()
|
|
|
|
|
root.title("车牌识别结果")
|
|
|
|
|
# 显示灰度图像
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
|
|
|
|
|
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
|
|
|
|
|
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
|
|
|
|
|
|
|
|
|
|
# 显示灰度图像
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 腐蚀(erode)和膨胀(dilate)
|
|
|
|
|
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
|
|
|
|
|
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
|
|
|
|
|
|
|
|
|
|
#x方向进行闭操作(抑制暗细节)
|
|
|
|
|
image = cv2.dilate(image, kernelX)
|
|
|
|
|
image = cv2.erode(image, kernelX)
|
|
|
|
|
|
|
|
|
|
#y方向的开操作
|
|
|
|
|
image = cv2.erode(image, kernelY)
|
|
|
|
|
image = cv2.dilate(image, kernelY)
|
|
|
|
|
|
|
|
|
|
# 中值滤波(去噪)
|
|
|
|
|
image = cv2.medianBlur(image, 21)
|
|
|
|
|
|
|
|
|
|
# 显示灰度图像
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 获得轮廓
|
|
|
|
|
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
for item in contours:
|
|
|
|
|
rect = cv2.boundingRect(item)
|
|
|
|
|
x = rect[0]
|
|
|
|
|
y = rect[1]
|
|
|
|
|
weight = rect[2]
|
|
|
|
|
height = rect[3]
|
|
|
|
|
# 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
|
|
|
|
|
if (weight > (height * 3.5)) and (weight < (height * 4)):
|
|
|
|
|
image = origin_image[y:y + height, x:x + weight]
|
|
|
|
|
plt_show0(image)
|
|
|
|
|
|
|
|
|
|
#车牌字符分割
|
|
|
|
|
# 图像去噪灰度处理
|
|
|
|
|
gray_image = gray_guss(image)
|
|
|
|
|
|
|
|
|
|
# 将Image对象转换为Tkinter支持的PhotoImage对象
|
|
|
|
|
photo_image = ImageTk.PhotoImage(image_tk)
|
|
|
|
|
# 图像阈值化操作——获得二值化图
|
|
|
|
|
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 创建标签以显示图像
|
|
|
|
|
label = ttk.Label(root, image=photo_image)
|
|
|
|
|
label.pack() # 将标签添加到窗口中并自动调整大小
|
|
|
|
|
#膨胀操作,使“津”字膨胀为一个近似的整体,为分割做准备
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
|
|
|
|
|
image = cv2.dilate(image, kernel)
|
|
|
|
|
plt_show(image)
|
|
|
|
|
|
|
|
|
|
# 查找轮廓
|
|
|
|
|
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
words = []
|
|
|
|
|
word_images = []
|
|
|
|
|
|
|
|
|
|
#对所有轮廓逐一操作
|
|
|
|
|
for item in contours:
|
|
|
|
|
word = []
|
|
|
|
|
rect = cv2.boundingRect(item)
|
|
|
|
|
x = rect[0]
|
|
|
|
|
y = rect[1]
|
|
|
|
|
weight = rect[2]
|
|
|
|
|
height = rect[3]
|
|
|
|
|
|
|
|
|
|
word.append(x)
|
|
|
|
|
|
|
|
|
|
word.append(y)
|
|
|
|
|
|
|
|
|
|
word.append(weight)
|
|
|
|
|
|
|
|
|
|
word.append(height)
|
|
|
|
|
|
|
|
|
|
words.append(word)
|
|
|
|
|
|
|
|
|
|
# 排序,车牌号有顺序。words是一个嵌套列表
|
|
|
|
|
words = sorted(words,key=lambda s:s[0],reverse=False)
|
|
|
|
|
i = 0
|
|
|
|
|
|
|
|
|
|
#word中存放轮廓的起始点和宽高
|
|
|
|
|
for word in words:
|
|
|
|
|
# 筛选字符的轮廓
|
|
|
|
|
if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 3.5)) and (word[2] > 25):
|
|
|
|
|
i = i+1
|
|
|
|
|
splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
|
|
|
|
|
word_images.append(splite_image)
|
|
|
|
|
#print(i)
|
|
|
|
|
#print(words)
|
|
|
|
|
|
|
|
|
|
for i,j in enumerate(word_images):
|
|
|
|
|
plt.subplot(1,7,i+1)
|
|
|
|
|
plt.imshow(word_images[i],cmap='gray')
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
#模版匹配
|
|
|
|
|
# 准备模板(template[0-9]为数字模板;)
|
|
|
|
|
template = ['0','1','2','3','4','5','6','7','8','9',
|
|
|
|
|
'A','B','C','D','E','F','G','H','J','K',
|
|
|
|
|
'L','M','N','P','Q','R','S','T','U','V',
|
|
|
|
|
'W','X','Y','Z','藏','川','鄂','甘','赣',
|
|
|
|
|
'贵','桂','黑','沪','吉','冀','津','晋','京',
|
|
|
|
|
'辽','鲁','蒙','闽','宁','青','琼','陕','苏',
|
|
|
|
|
'皖','湘','新','渝','豫','粤','云','浙']
|
|
|
|
|
|
|
|
|
|
# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
|
|
|
|
|
def read_directory(directory_name):
|
|
|
|
|
referImg_list = []
|
|
|
|
|
for filename in os.listdir(directory_name):
|
|
|
|
|
referImg_list.append(directory_name + "/" + filename)
|
|
|
|
|
return referImg_list
|
|
|
|
|
|
|
|
|
|
# 获得中文模板列表(只匹配车牌的第一个字符)
|
|
|
|
|
def get_chinese_words_list():
|
|
|
|
|
chinese_words_list = []
|
|
|
|
|
for i in range(34,64):
|
|
|
|
|
#将模板存放在字典中
|
|
|
|
|
c_word = read_directory('./refer1/'+ template[i])
|
|
|
|
|
chinese_words_list.append(c_word)
|
|
|
|
|
return chinese_words_list
|
|
|
|
|
chinese_words_list = get_chinese_words_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获得英文模板列表(只匹配车牌的第二个字符)
|
|
|
|
|
def get_eng_words_list():
|
|
|
|
|
eng_words_list = []
|
|
|
|
|
for i in range(10,34):
|
|
|
|
|
e_word = read_directory('./refer1/'+ template[i])
|
|
|
|
|
eng_words_list.append(e_word)
|
|
|
|
|
return eng_words_list
|
|
|
|
|
eng_words_list = get_eng_words_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获得英文和数字模板列表(匹配车牌后面的字符)
|
|
|
|
|
def get_eng_num_words_list():
|
|
|
|
|
eng_num_words_list = []
|
|
|
|
|
for i in range(0,34):
|
|
|
|
|
word = read_directory('./refer1/'+ template[i])
|
|
|
|
|
eng_num_words_list.append(word)
|
|
|
|
|
return eng_num_words_list
|
|
|
|
|
eng_num_words_list = get_eng_num_words_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 读取一个模板地址与图片进行匹配,返回得分
|
|
|
|
|
def template_score(template,image):
|
|
|
|
|
#将模板进行格式转换
|
|
|
|
|
template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
|
|
|
|
|
template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
#模板图像阈值化处理——获得黑白图
|
|
|
|
|
ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
|
|
|
|
|
# height, width = template_img.shape
|
|
|
|
|
# image_ = image.copy()
|
|
|
|
|
# image_ = cv2.resize(image_, (width, height))
|
|
|
|
|
image_ = image.copy()
|
|
|
|
|
#获得待检测图片的尺寸
|
|
|
|
|
height, width = image_.shape
|
|
|
|
|
# 将模板resize至与图像一样大小
|
|
|
|
|
template_img = cv2.resize(template_img, (width, height))
|
|
|
|
|
# 模板匹配,返回匹配得分
|
|
|
|
|
result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
|
|
|
|
|
return result[0][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 对分割得到的字符逐一匹配
|
|
|
|
|
def template_matching(word_images):
|
|
|
|
|
results = []
|
|
|
|
|
for index,word_image in enumerate(word_images):
|
|
|
|
|
if index==0:
|
|
|
|
|
best_score = []
|
|
|
|
|
for chinese_words in chinese_words_list:
|
|
|
|
|
score = []
|
|
|
|
|
for chinese_word in chinese_words:
|
|
|
|
|
result = template_score(chinese_word,word_image)
|
|
|
|
|
score.append(result)
|
|
|
|
|
best_score.append(max(score))
|
|
|
|
|
i = best_score.index(max(best_score))
|
|
|
|
|
# print(template[34+i])
|
|
|
|
|
r = template[34+i]
|
|
|
|
|
results.append(r)
|
|
|
|
|
continue
|
|
|
|
|
if index==1:
|
|
|
|
|
best_score = []
|
|
|
|
|
for eng_word_list in eng_words_list:
|
|
|
|
|
score = []
|
|
|
|
|
for eng_word in eng_word_list:
|
|
|
|
|
result = template_score(eng_word,word_image)
|
|
|
|
|
score.append(result)
|
|
|
|
|
best_score.append(max(score))
|
|
|
|
|
i = best_score.index(max(best_score))
|
|
|
|
|
# print(template[10+i])
|
|
|
|
|
r = template[10+i]
|
|
|
|
|
results.append(r)
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
best_score = []
|
|
|
|
|
for eng_num_word_list in eng_num_words_list:
|
|
|
|
|
score = []
|
|
|
|
|
for eng_num_word in eng_num_word_list:
|
|
|
|
|
result = template_score(eng_num_word,word_image)
|
|
|
|
|
score.append(result)
|
|
|
|
|
best_score.append(max(score))
|
|
|
|
|
i = best_score.index(max(best_score))
|
|
|
|
|
# print(template[i])
|
|
|
|
|
r = template[i]
|
|
|
|
|
results.append(r)
|
|
|
|
|
continue
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
word_images_ = word_images.copy()
|
|
|
|
|
# 调用函数获得结果
|
|
|
|
|
|
|
|
|
|
result = template_matching(word_images_)
|
|
|
|
|
#print(result)
|
|
|
|
|
# "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
|
|
|
|
|
#print( "".join(result))
|
|
|
|
|
history.append("".join(result))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from PIL import ImageFont, ImageDraw, Image
|
|
|
|
|
|
|
|
|
|
height,weight = origin_image.shape[0:2]
|
|
|
|
|
#print(height)
|
|
|
|
|
#print(weight)
|
|
|
|
|
|
|
|
|
|
image_1 = origin_image.copy()
|
|
|
|
|
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
|
|
|
|
|
|
|
|
|
|
#设置需要显示的字体
|
|
|
|
|
fontpath = "font/simsun.ttc"
|
|
|
|
|
font = ImageFont.truetype(fontpath,64)
|
|
|
|
|
img_pil = Image.fromarray(image_1)
|
|
|
|
|
draw = ImageDraw.Draw(img_pil)
|
|
|
|
|
|
|
|
|
|
#绘制文字信息
|
|
|
|
|
draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
|
|
|
|
|
bk_img = np.array(img_pil)
|
|
|
|
|
#print(result)
|
|
|
|
|
|
|
|
|
|
return bk_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
root = tk.Tk()
|
|
|
|
|
root.title("图片导入器")
|
|
|
|
|
root.geometry("1000x1000")
|
|
|
|
|
|
|
|
|
|
# 用于存储历史记录的列表
|
|
|
|
|
history = []
|
|
|
|
|
current_image_label = None
|
|
|
|
|
# 全局变量,用于存储加载的图像
|
|
|
|
|
# 显示图像的函数
|
|
|
|
|
def show_image(image):
|
|
|
|
|
global current_image_label # 引用全局变量
|
|
|
|
|
if current_image_label is not None: # 如果存在先前的Label,先删除它
|
|
|
|
|
current_image_label.pack_forget() # 使用pack_forget()移除组件
|
|
|
|
|
|
|
|
|
|
pil_image = ImageTk.PhotoImage(image=Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)))
|
|
|
|
|
lbl_image = tk.Label(root, image=pil_image)
|
|
|
|
|
lbl_image.image = pil_image # 保持对图像的引用,防止垃圾回收
|
|
|
|
|
lbl_image.pack()
|
|
|
|
|
current_image_label = lbl_image # 更新全局变量,存储新的Label引用
|
|
|
|
|
def open_image():
|
|
|
|
|
# 弹出文件选择对话框并返回用户选择的文件路径
|
|
|
|
|
file_path = filedialog.askopenfilename()
|
|
|
|
|
return file_path
|
|
|
|
|
def load_and_show_image():
|
|
|
|
|
file_path = open_image() # 调用函数获取文件路径
|
|
|
|
|
show_image(eaowej(file_path)) # 传递文件路径给加载图像的函数
|
|
|
|
|
|
|
|
|
|
# 显示历史记录的函数
|
|
|
|
|
|
|
|
|
|
def plt_show0(img):
|
|
|
|
|
# cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]
|
|
|
|
|
b, g, r = cv2.split(img)
|
|
|
|
|
img = cv2.merge([r, g, b])
|
|
|
|
|
plt.imshow(img)
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
# 防止Tkinter在图像数据被垃圾回收时删除图像
|
|
|
|
|
label.image = photo_image
|
|
|
|
|
|
|
|
|
|
# 运行Tkinter事件循环
|
|
|
|
|
def show_history():
|
|
|
|
|
# 创建一个新的窗口来显示历史记录
|
|
|
|
|
history_window = tk.Toplevel(root)
|
|
|
|
|
history_window.title("历史记录")
|
|
|
|
|
history_window.geometry("600x400") # 根据需要调整大小
|
|
|
|
|
|
|
|
|
|
# 创建一个文本框来显示历史记录
|
|
|
|
|
txt_history = tk.Text(history_window, height=10, width=50)
|
|
|
|
|
txt_history.pack(pady=20)
|
|
|
|
|
|
|
|
|
|
# 将历史记录数据添加到文本框中
|
|
|
|
|
for record in history:
|
|
|
|
|
txt_history.insert(tk.END, record + "\n")
|
|
|
|
|
button_history = tk.Button(root, text="查看历史记录", command=show_history)
|
|
|
|
|
button_history.pack()
|
|
|
|
|
# 创建一个按钮,点击时调用 load_and_show_image 函数
|
|
|
|
|
button = tk.Button(root, text="导入图片", command=load_and_show_image)
|
|
|
|
|
button.pack()
|
|
|
|
|
root.mainloop()
|
|
|
|
|
print(history)
|