|
|
|
(*
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
*
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
*)
|
|
|
|
|
|
|
|
(* A mini-LLAIR model, based on the files in sledge/src/llair *)
|
|
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
|
open settingsTheory memory_modelTheory;
|
|
|
|
|
|
|
|
new_theory "llair";
|
|
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
|
|
(* ----- Abstract syntax ----- *)
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
typ =
|
|
|
|
| FunctionT typ (typ list)
|
|
|
|
(* How many bits the integer occupies *)
|
|
|
|
| IntegerT num
|
|
|
|
| PointerT typ
|
|
|
|
| ArrayT typ num
|
|
|
|
| TupleT (typ list)
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
var = Var_name string typ
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
label = Lab_name string string
|
|
|
|
End
|
|
|
|
|
|
|
|
(* Based on the constructor functions in exp.mli rather than the type definition *)
|
|
|
|
Datatype:
|
|
|
|
exp =
|
|
|
|
| Var var
|
|
|
|
| Nondet
|
|
|
|
(* Args: function name, block name *)
|
|
|
|
| Label label
|
|
|
|
(* Args: byte, size *)
|
|
|
|
| Splat exp exp
|
|
|
|
(* Args: size, byte array *)
|
|
|
|
| Memory exp exp
|
|
|
|
(* Byte array concatenation *)
|
|
|
|
| Concat (exp list)
|
|
|
|
| Integer int typ
|
|
|
|
| Eq exp exp
|
|
|
|
| Lt exp exp
|
|
|
|
| Ult exp exp
|
|
|
|
| Sub typ exp exp
|
|
|
|
| Record (exp list)
|
|
|
|
(* Args: Record, index *)
|
|
|
|
| Select exp exp
|
|
|
|
(* Args: Record, index, value *)
|
|
|
|
| Update exp exp exp
|
|
|
|
(* Args: unsigned?, to-type, from-type, value *)
|
|
|
|
| Convert bool typ typ exp
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
inst =
|
|
|
|
(* Args: the list of variable, expression assignments to do *)
|
|
|
|
| Move ((var # exp) list)
|
|
|
|
(* Args: result reg, pointer, length *)
|
|
|
|
| Load var exp num
|
|
|
|
(* Args: pointer, value, length *)
|
|
|
|
| Store exp exp num
|
|
|
|
(* Args: destination, contents, length *)
|
|
|
|
| Memset exp exp exp
|
|
|
|
(* Args: destination, source, length *)
|
|
|
|
| Memcpy exp exp exp
|
|
|
|
(* Args: destination, source, length *)
|
|
|
|
| Memmov exp exp exp
|
|
|
|
(* Args : result, number of elements, size *)
|
|
|
|
| Alloc var exp exp
|
|
|
|
(* Args: pointer *)
|
|
|
|
| Free exp
|
|
|
|
(* Args: result reg *)
|
|
|
|
| NondetI var
|
|
|
|
| Abort
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
term =
|
|
|
|
(* Args: key, branch table, default exp *)
|
|
|
|
| Switch exp ((int # label) list) label
|
|
|
|
(* Args: int to switch on, jump table *)
|
|
|
|
| Iswitch exp (label list)
|
|
|
|
(* Args: result reg, function to call, arguments, return type of callee,
|
|
|
|
* return target, exception target *)
|
|
|
|
| Call var label (exp list) typ label label
|
|
|
|
| Return exp
|
|
|
|
| Throw exp
|
|
|
|
| Unreachable
|
|
|
|
| Exit exp
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
block = <| cmnd : inst list; term : term |>
|
|
|
|
End
|
|
|
|
|
|
|
|
(* The llair code doesn't have params here yet, but it will need to *)
|
|
|
|
Datatype:
|
|
|
|
func = <| params : var list;
|
|
|
|
locals : var set;
|
|
|
|
entry : label;
|
|
|
|
cfg : (label, block) alist;
|
|
|
|
freturn : var;
|
|
|
|
fthrow : var |>
|
|
|
|
End
|
|
|
|
|
|
|
|
(* The int is how much space the global needs *)
|
|
|
|
Datatype:
|
|
|
|
global = <| var : var; init : (exp # int) option; typ: typ |>
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
llair = <| glob_init : global list; functions : (string, func) alist |>
|
|
|
|
End
|
|
|
|
|
|
|
|
(* ----- Semantic states ----- *)
|
|
|
|
|
|
|
|
(* These are the values that can be stored in registers. The implementation uses
|
|
|
|
* integers with a bit-width to represent numbers and pointers. Here we
|
|
|
|
* interpret the bit width b as meaning the int should be in the range [-2^(b-1),2^(b-1))
|
|
|
|
*)
|
|
|
|
Datatype:
|
|
|
|
flat_v =
|
|
|
|
| IntV int num
|
|
|
|
End
|
|
|
|
|
|
|
|
Type v = ``:flat_v reg_v``
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
frame = <| ret : label; exn_ret : label; ret_var : var; saved_locals : var |-> v; |>
|
|
|
|
End
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
state =
|
|
|
|
<| bp : label; (* Pointer to the next block to execute *)
|
|
|
|
glob_addrs : var |-> num;
|
|
|
|
locals : var |-> v;
|
|
|
|
stack : frame list;
|
|
|
|
heap : unit heap;
|
|
|
|
status : trace_type |>
|
|
|
|
End
|
|
|
|
|
|
|
|
(* Assume that all pointers can fit in 64 bits *)
|
|
|
|
Definition pointer_size_def:
|
|
|
|
pointer_size = 64
|
|
|
|
End
|
|
|
|
|
|
|
|
(* ----- Semantic transitions ----- *)
|
|
|
|
|
|
|
|
(* The size of a type in bytes, rounded up *)
|
|
|
|
Definition sizeof_def:
|
|
|
|
(sizeof (IntegerT n) = (n+7) DIV 8) ∧
|
|
|
|
(sizeof (PointerT t) = (pointer_size+7) DIV 8) ∧
|
|
|
|
(sizeof (ArrayT t n) = n * sizeof t) ∧
|
|
|
|
(sizeof (TupleT ts) = sum (map sizeof ts))
|
|
|
|
Termination
|
|
|
|
WF_REL_TAC `measure typ_size` >> simp [] >>
|
|
|
|
Induct >> rw [definition "typ_size_def"] >> simp [] >>
|
|
|
|
first_x_assum drule >> decide_tac
|
|
|
|
End
|
|
|
|
|
|
|
|
(* The size of a type in bits *)
|
|
|
|
Definition sizeof_bits_def:
|
|
|
|
(sizeof_bits (IntegerT n) = n) ∧
|
|
|
|
(sizeof_bits (PointerT t) = pointer_size) ∧
|
|
|
|
(sizeof_bits (ArrayT t n) = n * sizeof_bits t) ∧
|
|
|
|
(sizeof_bits (TupleT ts) = sum (map sizeof_bits ts))
|
|
|
|
Termination
|
|
|
|
WF_REL_TAC `measure typ_size` >> simp [] >>
|
|
|
|
Induct >> rw [definition "typ_size_def"] >> simp [] >>
|
|
|
|
first_x_assum drule >> decide_tac
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition first_class_type_def:
|
|
|
|
(first_class_type (IntegerT _) ⇔ T) ∧
|
|
|
|
(first_class_type (PointerT _) ⇔ T) ∧
|
|
|
|
(first_class_type (ArrayT t _) ⇔ first_class_type t) ∧
|
|
|
|
(first_class_type (TupleT ts) ⇔ every first_class_type ts) ∧
|
|
|
|
(first_class_type _ ⇔ F)
|
|
|
|
Termination
|
|
|
|
WF_REL_TAC `measure typ_size` >>
|
|
|
|
rw [] >>
|
|
|
|
Induct_on `ts` >> rw [definition "typ_size_def"] >>
|
|
|
|
res_tac >> decide_tac
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive value_type:
|
|
|
|
(∀n i. value_type (IntegerT n) (FlatV (IntV i n))) ∧
|
|
|
|
(∀t vs n.
|
|
|
|
every (value_type t) vs ∧ length vs = n ∧ first_class_type t
|
|
|
|
⇒
|
|
|
|
value_type (ArrayT t n) (AggV vs)) ∧
|
|
|
|
(∀ts vs.
|
|
|
|
list_rel value_type ts vs
|
|
|
|
⇒
|
|
|
|
value_type (TupleT ts) (AggV vs))
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition bool2v_def:
|
|
|
|
bool2v b = FlatV (IntV (if b then 1 else 0) 1)
|
|
|
|
End
|
|
|
|
|
|
|
|
(* The natural number, interpreted as unsigned, fits in the given number of bits *)
|
|
|
|
Definition nfits_def:
|
|
|
|
nfits (n:num) size ⇔
|
|
|
|
0 < size ∧ n < 2 ** size
|
|
|
|
End
|
|
|
|
|
|
|
|
(* Convert an integer to an unsigned number, following the 2's complement
|
|
|
|
* representation, assuming (ifits i size). This is what OCaml's Z.extract does,
|
|
|
|
* which is used in LLAIR for Convert expressions and unsigned operations, e.g.,
|
|
|
|
* <. The difference between LLAIR's extract and i2n is that i2n assumes that i
|
|
|
|
* fits into size rather than truncating it first. *)
|
|
|
|
Definition i2n_def:
|
|
|
|
i2n (IntV i size) : num =
|
|
|
|
if i < 0 then
|
|
|
|
Num (2 ** size + i)
|
|
|
|
else
|
|
|
|
Num i
|
|
|
|
End
|
|
|
|
|
|
|
|
(* Convert an unsigned number into the integer that it would be in 2's
|
|
|
|
* compliment with the given size, assuming (nfits n size) *)
|
|
|
|
Definition n2i_def:
|
|
|
|
n2i n size =
|
|
|
|
if 2 ** (size - 1) ≤ n then
|
|
|
|
(IntV (&n - &(2 ** size)) size)
|
|
|
|
else
|
|
|
|
(IntV (&n) size)
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive eval_exp:
|
|
|
|
(∀s v r.
|
|
|
|
flookup s.locals v = Some r
|
|
|
|
⇒
|
|
|
|
eval_exp s (Var v) r) ∧
|
|
|
|
|
|
|
|
(* TODO: Nondet I guess we need to know the type here *)
|
|
|
|
(* TODO: Label *)
|
|
|
|
|
|
|
|
(∀s e1 e2 n byte n_size.
|
|
|
|
eval_exp s e1 (FlatV (IntV byte 8)) ∧
|
|
|
|
(* This idiom means that e2 evaluates to a non-negative integer n, and is
|
|
|
|
* used throughout *)
|
|
|
|
eval_exp s e2 (FlatV (IntV (&n) n_size))
|
|
|
|
⇒
|
|
|
|
eval_exp s (Splat e1 e2) (AggV (replicate n (FlatV (IntV byte 8))))) ∧
|
|
|
|
|
|
|
|
(* TODO Question: What if size <> vals? *)
|
|
|
|
(∀s e1 e2 l vals n_size.
|
|
|
|
eval_exp s e1 (AggV vals) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV (&l) n_size)) ∧
|
|
|
|
l = length vals
|
|
|
|
⇒
|
|
|
|
eval_exp s (Memory e1 e2) (AggV vals)) ∧
|
|
|
|
|
|
|
|
(∀s es vals.
|
|
|
|
list_rel (eval_exp s) es (map AggV vals)
|
|
|
|
⇒
|
|
|
|
eval_exp s (Concat es) (AggV (flat vals))) ∧
|
|
|
|
|
|
|
|
(∀s i size.
|
|
|
|
eval_exp s (Integer i (IntegerT size)) (FlatV (IntV (truncate_2comp i size) size))) ∧
|
|
|
|
|
|
|
|
(* TODO Question: Should the same integer with two different sizes be equal *)
|
|
|
|
(∀s e1 e2 r1 r2.
|
|
|
|
eval_exp s e1 r1 ∧
|
|
|
|
eval_exp s e2 r2
|
|
|
|
⇒
|
|
|
|
eval_exp s (Eq e1 e2) (bool2v (r1 = r2))) ∧
|
|
|
|
|
|
|
|
(∀s e1 e2 i1 size1 i2 size2.
|
|
|
|
eval_exp s e1 (FlatV (IntV i1 size1)) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV i2 size2)) ∧
|
|
|
|
ifits i1 size1 ∧
|
|
|
|
ifits i2 size2
|
|
|
|
⇒
|
|
|
|
eval_exp s (Lt e1 e2) (bool2v (i1 < i2))) ∧
|
|
|
|
|
|
|
|
(∀s e1 e2 i1 i2 size1 size2.
|
|
|
|
eval_exp s e1 (FlatV (IntV i1 size1)) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV i2 size2)) ∧
|
|
|
|
ifits i1 size1 ∧
|
|
|
|
ifits i2 size2
|
|
|
|
⇒
|
|
|
|
eval_exp s (Ult e1 e2) (bool2v (i2n (IntV i1 size1) < i2n (IntV i2 size2)))) ∧
|
|
|
|
|
|
|
|
(∀s size e1 e2 i1 i2.
|
|
|
|
eval_exp s e1 (FlatV (IntV i1 size)) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV i2 size))
|
|
|
|
⇒
|
|
|
|
eval_exp s (Sub (IntegerT size) e1 e2) (FlatV (IntV (truncate_2comp (i1 - i2) size) size))) ∧
|
|
|
|
|
|
|
|
(∀s es vals.
|
|
|
|
list_rel (eval_exp s) es vals
|
|
|
|
⇒
|
|
|
|
eval_exp s (Record es) (AggV vals)) ∧
|
|
|
|
|
|
|
|
(∀s e1 e2 vals idx idx_size.
|
|
|
|
eval_exp s e1 (AggV vals) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV (&idx) idx_size)) ∧
|
|
|
|
idx < length vals
|
|
|
|
⇒
|
|
|
|
eval_exp s (Select e1 e2) (el idx vals)) ∧
|
|
|
|
|
|
|
|
(∀s e1 e2 e3 vals r idx idx_size.
|
|
|
|
eval_exp s e1 (AggV vals) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV (&idx) idx_size)) ∧
|
|
|
|
eval_exp s e3 r ∧
|
|
|
|
idx < length vals
|
|
|
|
⇒
|
|
|
|
eval_exp s (Update e1 e2 e3) (AggV (list_update r idx vals))) ∧
|
|
|
|
|
|
|
|
(∀s to_t from_t e v size.
|
|
|
|
eval_exp s e (FlatV v) ∧
|
|
|
|
size = sizeof_bits to_t
|
|
|
|
⇒
|
|
|
|
eval_exp s (Convert T to_t from_t e) (FlatV (IntV (truncate_2comp (&i2n v) size) size))) ∧
|
|
|
|
|
|
|
|
(∀s to_t from_t e size size1 i.
|
|
|
|
eval_exp s e (FlatV (IntV i size1)) ∧
|
|
|
|
size = sizeof_bits to_t
|
|
|
|
⇒
|
|
|
|
eval_exp s (Convert F to_t from_t e) (FlatV (IntV (truncate_2comp i size) size)))
|
|
|
|
|
|
|
|
End
|
|
|
|
|
|
|
|
(* BEGIN Functions to interface to the generic memory model *)
|
|
|
|
Definition type_to_shape_def:
|
|
|
|
(type_to_shape (IntegerT n) = Flat (sizeof (IntegerT n)) (IntegerT n)) ∧
|
|
|
|
(type_to_shape (PointerT t) = Flat (sizeof (PointerT t)) (PointerT t)) ∧
|
|
|
|
(type_to_shape (ArrayT t n) = Array (type_to_shape t) n) ∧
|
|
|
|
(type_to_shape (TupleT ts) = Tuple (map type_to_shape ts))
|
|
|
|
Termination
|
|
|
|
WF_REL_TAC `measure typ_size` >>
|
|
|
|
rw [] >>
|
|
|
|
Induct_on `ts` >> rw [definition "typ_size_def"] >>
|
|
|
|
res_tac >> decide_tac
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition convert_value_def:
|
|
|
|
(convert_value (IntegerT size) n =
|
|
|
|
if size = 1 then
|
|
|
|
IntV (if n = 0 then 0 else -1) size
|
|
|
|
else
|
|
|
|
n2i n size) ∧
|
|
|
|
(convert_value (PointerT t) n =
|
|
|
|
n2i n pointer_size)
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition bytes_to_llair_value_def:
|
|
|
|
bytes_to_llair_value t bs =
|
|
|
|
(bytes_to_value (λn t w. convert_value t w) (type_to_shape t) bs)
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition unconvert_value_def:
|
|
|
|
unconvert_value (IntV i size) = ((size + 7) DIV 8, i2n (IntV i size))
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition llair_value_to_bytes_def:
|
|
|
|
llair_value_to_bytes v =
|
|
|
|
value_to_bytes unconvert_value v
|
|
|
|
End
|
|
|
|
(* END Functions to interface to the generic memory model *)
|
|
|
|
|
|
|
|
Definition update_results_def:
|
|
|
|
update_results xvs s = s with locals := s.locals |++ xvs
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive get_obs:
|
|
|
|
(∀s ptr bytes x. flookup s.glob_addrs x = Some ptr ⇒ get_obs s ptr bytes (W x bytes)) ∧
|
|
|
|
(∀s ptr bytes. ptr ∉ FRANGE s.glob_addrs ⇒ get_obs s ptr bytes Tau)
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive step_inst:
|
|
|
|
(∀s ves rs.
|
|
|
|
list_rel (eval_exp s) (map snd ves) rs
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(Move ves) Tau
|
|
|
|
(update_results (map (λ(v,r). (v, r)) (zip (map fst ves, rs))) s)) ∧
|
|
|
|
|
|
|
|
(∀s x t e size ptr freeable interval bytes.
|
|
|
|
eval_exp s e (FlatV ptr) ∧
|
|
|
|
interval = Interval freeable (i2n ptr) (i2n ptr + size) ∧
|
|
|
|
is_allocated interval s.heap ∧
|
|
|
|
bytes = map snd (get_bytes s.heap interval)
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(Load (Var_name x t) e size) Tau
|
|
|
|
(update_results [(Var_name x t, fst (bytes_to_llair_value t bytes))] s)) ∧
|
|
|
|
|
|
|
|
(∀s e1 e2 size ptr bytes freeable interval r obs.
|
|
|
|
eval_exp s e1 (FlatV ptr) ∧
|
|
|
|
eval_exp s e2 r ∧
|
|
|
|
interval = Interval freeable (i2n ptr) (i2n ptr + size) ∧
|
|
|
|
is_allocated interval s.heap ∧
|
|
|
|
bytes = llair_value_to_bytes r ∧
|
|
|
|
length bytes = size ∧
|
|
|
|
get_obs s (i2n ptr) bytes obs
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(Store e1 e2 size) obs
|
|
|
|
(s with heap := set_bytes () bytes (i2n ptr) s.heap)) ∧
|
|
|
|
|
|
|
|
(* TODO memset *)
|
|
|
|
|
|
|
|
(∀s e1 e2 e3 dest_ptr src_ptr size src_interval freeable1 freeable2 bytes.
|
|
|
|
eval_exp s e1 (FlatV dest_ptr) ∧
|
|
|
|
eval_exp s e2 (FlatV src_ptr) ∧
|
|
|
|
eval_exp s e3 (FlatV size) ∧
|
|
|
|
src_interval = Interval freeable1 (i2n src_ptr) (i2n src_ptr + i2n size) ∧
|
|
|
|
is_allocated src_interval s.heap ∧
|
|
|
|
is_allocated (Interval freeable2 (i2n dest_ptr) (i2n dest_ptr + i2n size)) s.heap ∧
|
|
|
|
(* TODO Question: should we allow overlap? *)
|
|
|
|
bytes = map snd (get_bytes s.heap src_interval)
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(Memcpy e1 e2 e3) Tau
|
|
|
|
(s with heap := set_bytes () bytes (i2n dest_ptr) s.heap)) ∧
|
|
|
|
|
|
|
|
(* TODO memmove *)
|
|
|
|
|
|
|
|
(∀s v e1 e2 n size ptr new_h size_size.
|
|
|
|
eval_exp s e1 (FlatV n) ∧
|
|
|
|
eval_exp s e2 (FlatV (IntV (&size) size_size)) ∧
|
|
|
|
allocate s.heap (i2n n * size) () (ptr, new_h) ∧
|
|
|
|
nfits ptr pointer_size
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(Alloc v e1 e2) Tau
|
|
|
|
(update_results [(v, FlatV (n2i ptr pointer_size))] (s with heap := new_h))) ∧
|
|
|
|
|
|
|
|
(∀s e ptr.
|
|
|
|
eval_exp s e (FlatV ptr)
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(Free e) Tau
|
|
|
|
(s with heap := deallocate [A (i2n ptr)] s.heap)) ∧
|
|
|
|
|
|
|
|
(∀s x t nondet.
|
|
|
|
value_type t nondet
|
|
|
|
⇒
|
|
|
|
step_inst s
|
|
|
|
(NondetI (Var_name x t)) Tau
|
|
|
|
(update_results [(Var_name x t, nondet)] s))
|
|
|
|
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive step_term:
|
|
|
|
|
|
|
|
(∀prog s e table default idx fname bname idx_size.
|
|
|
|
eval_exp s e (FlatV (IntV idx idx_size)) ∧
|
|
|
|
Lab_name fname bname = (case alookup table idx of Some lab => lab | None => default)
|
|
|
|
⇒
|
|
|
|
step_term prog s
|
|
|
|
(Switch e table default) Tau
|
|
|
|
(s with bp := Lab_name fname bname)) ∧
|
|
|
|
|
|
|
|
(∀prog s e labs i idx idx_size.
|
|
|
|
eval_exp s e (FlatV (IntV (&idx) idx_size)) ∧
|
|
|
|
idx < length labs
|
|
|
|
⇒
|
|
|
|
step_term prog s
|
|
|
|
(Iswitch e labs) Tau
|
|
|
|
(s with bp := el i labs)) ∧
|
|
|
|
|
|
|
|
(∀prog s v fname bname es t ret1 ret2 vals f.
|
|
|
|
alookup prog.functions fname = Some f ∧
|
|
|
|
f.entry = Lab_name fname bname ∧
|
|
|
|
list_rel (eval_exp s) es vals
|
|
|
|
⇒
|
|
|
|
step_term prog s
|
|
|
|
(Call v (Lab_name fname bname) es t ret1 ret2) Tau
|
|
|
|
<| bp := Lab_name fname bname;
|
|
|
|
glob_addrs := s.glob_addrs;
|
|
|
|
locals := alist_to_fmap (zip (f.params, vals));
|
|
|
|
stack :=
|
|
|
|
<| ret := ret1;
|
|
|
|
exn_ret := ret2;
|
|
|
|
ret_var := v;
|
|
|
|
saved_locals := s.locals |> :: s.stack;
|
|
|
|
heap := s.heap |>) ∧
|
|
|
|
|
|
|
|
(∀prog s e r top rest.
|
|
|
|
eval_exp s e r ∧
|
|
|
|
s.stack = top::rest
|
|
|
|
⇒
|
|
|
|
step_term prog s
|
|
|
|
(Return e) Tau
|
|
|
|
<| bp := top.ret;
|
|
|
|
glob_addrs := s.glob_addrs;
|
|
|
|
locals := top.saved_locals |+ (top.ret_var, r);
|
|
|
|
stack := rest;
|
|
|
|
heap := s.heap |>) ∧
|
|
|
|
|
|
|
|
(∀prog s e i size.
|
|
|
|
eval_exp s e (FlatV (IntV i size))
|
|
|
|
⇒
|
|
|
|
step_term prog s (Exit e) (Exit i) (s with status := Complete i))
|
|
|
|
(* TODO Throw *)
|
|
|
|
|
|
|
|
End
|
|
|
|
|
|
|
|
(* With function calls terminating blocks, it's very easy to get rid of the
|
|
|
|
* instruction pointer and do a big-step evaluation for each block *)
|
|
|
|
Inductive step_block:
|
|
|
|
|
|
|
|
(∀prog s1 t l s2.
|
|
|
|
step_term prog s1 t l s2
|
|
|
|
⇒
|
|
|
|
step_block prog s1 [] t [l] s2) ∧
|
|
|
|
|
|
|
|
(∀prog s1 t.
|
|
|
|
¬(∃s2 (l:var obs). step_term prog s1 t l s2)
|
|
|
|
⇒
|
|
|
|
step_block prog s1 [] t [Error] (s1 with status := Stuck)) ∧
|
|
|
|
|
|
|
|
(∀prog s1 i1 is t.
|
|
|
|
(¬∃l s2. step_inst s1 i1 l s2)
|
|
|
|
⇒
|
|
|
|
step_block prog s1 (i1::is) t [Error] (s1 with status := Stuck)) ∧
|
|
|
|
|
|
|
|
(∀prog s1 i l is ls t s2 s3.
|
|
|
|
step_inst s1 i l s2 ∧
|
|
|
|
step_block prog s2 is t ls s3
|
|
|
|
⇒
|
|
|
|
step_block prog s1 (i::is) t (l::ls) s3)
|
|
|
|
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive get_block:
|
|
|
|
∀prog bp fname bname f b.
|
|
|
|
bp = Lab_name fname bname ∧
|
|
|
|
alookup prog.functions fname = Some f ∧
|
|
|
|
alookup f.cfg bp = Some b
|
|
|
|
⇒
|
|
|
|
get_block prog bp b
|
|
|
|
End
|
|
|
|
|
|
|
|
Inductive step:
|
|
|
|
∀prog s b ls s'.
|
|
|
|
get_block prog s.bp b ∧
|
|
|
|
step_block prog s b.cmnd b.term ls s' ∧
|
|
|
|
s.status = Partial
|
|
|
|
⇒
|
|
|
|
step prog s ls s'
|
|
|
|
End
|
|
|
|
|
|
|
|
Definition sem_def:
|
|
|
|
sem p s1 =
|
|
|
|
{ l1 | ∃path l2. l1 ∈ observation_prefixes ((last path).status, flat l2) ∧
|
|
|
|
toList (labels path) = Some l2 ∧
|
|
|
|
finite path ∧ okpath (step p) path ∧ first path = s1 }
|
|
|
|
End
|
|
|
|
|
|
|
|
export_theory ();
|