Summary: In this diff, it passes the parameter of integer type widths to evaluation functions. The parameter which will be used for casting in the following diff.
Reviewed By: mbouaziz
Differential Revision: D12920581
fbshipit-source-id: 48bbc802b
Summary:
It enables the translation of casting expression. As of now, it
translates only the castings of pointers to integer types, in order to
avoid too much of change, which may mess the checkers up.
Reviewed By: jvillard
Differential Revision: D12920568
fbshipit-source-id: a5489df24
Summary:
It turns out keeping attributes (such as invalidation facts) separate
from the memory is a bad idea and leads to loss of precision and false
positives, as seen in the new test (which previously generated a
report).
Allow me to illustrate on this example, which is a stylised version of
the issue in the added test: previously we'd have:
```
state1 = { x = 1; invalids={} }
state2 = { x = 2; invalids ={1} }
join(state1, state2) = { x = {1, 2}; invalids={{1, 2}} }
```
So even though none of the states said that `x` pointed to an invalid
location, the join state says it does because `1` and `2` have been
glommed together. The fact `x=1` from `state1` and the fact "1 is
invalid" from `state2` conspire together and `x` is now invalid even
though it shouldn't.
Instead, if we record attributes as part of the memory we get that `x`
is still valid after the join:
```
state1 = { x = (1, {}) }
state2 = { x = (2, {}) }
join(state1, state2) = { x = ({1, 2}, {}) }
```
Reviewed By: mbouaziz
Differential Revision: D12958130
fbshipit-source-id: 53dc81cc7
Summary:
I hear that this scheduler is better. I want the best scheduler
possible. Also pulse's join is a bit complex so it might matter one day.
whydididothis
Reviewed By: mbouaziz
Differential Revision: D12958131
fbshipit-source-id: 3bd77ccba
Summary: For a general case of `operator=` we want to create a fresh location for the first parameter as `operator=` behaves as copy assignment.
Reviewed By: jvillard
Differential Revision: D12940635
fbshipit-source-id: 89c6e530d
Summary:
Whenever `vec.reserve(n)` is called, remember that the vector is
"reserved". When doing `vec.push_back(x)` on a reserved vector, assume
enough size has been reserved in advance and do not invalidate the
underlying array.
This gets rid of false positives.
Reviewed By: mbouaziz
Differential Revision: D12939837
fbshipit-source-id: ce6354fc5
Summary:
Instead of keeping at most one invalidation fact for each address, keep
a set of them and call them "attributes". Keeping a set of invalidation
facts is redundant since we always only want the smallest one, but
makes the implementation simpler, especially once we add more kinds of
attributes (used for modelling, see next diffs).
Reviewed By: mbouaziz
Differential Revision: D12939839
fbshipit-source-id: 4a54c2132
Summary:
Copied on the ownership checker logic: return the initial value of the
domain as return. This can probably be improved.
Reviewed By: mbouaziz
Differential Revision: D12888102
fbshipit-source-id: 9e2dac7fc
Summary:
When initialising a variable via semi-exotic means, the frontend loses
the information that the variable was initialised. For instance, it
translates:
```
struct Foo { int i; };
...
Foo s = {42};
```
as:
```
s.i := 42
```
This can be confusing for backends that need to know that `s` actually
got initialised, eg pulse.
The solution implemented here is to insert of dummy call to
`__variable_initiazition`:
```
__variable_initialization(&s);
s.i := 42;
```
Then checkers can recognise that this builtin function does what its
name says.
Reviewed By: mbouaziz
Differential Revision: D12887122
fbshipit-source-id: 6e7214438
Summary:
Now that arrays are dealt with separately (see previous diff), we can
turn the join back into an over-approximation as far as invalid
locations are concerned.
Reviewed By: skcho
Differential Revision: D12881989
fbshipit-source-id: fd85e49c0
Summary:
Arrays are the main source of false positives that prevent us from
having a better (less under-approximate) join in general. The next diff
improves join and I split this off to make it easier to review.
Reviewed By: mbouaziz
Differential Revision: D12881986
fbshipit-source-id: 5f52dea27
Summary:
This prevents the join from wrongly assuming that we haven't seen a
variable on one side of the join.
Reviewed By: skcho
Differential Revision: D12881987
fbshipit-source-id: 42a776adb
Summary:
Smaller numbers are easier to read and abstract addresses should never
be shared across functions anyway.
Reviewed By: da319
Differential Revision: D12881988
fbshipit-source-id: f9bcfa343
Summary:
The upcoming ocamlformat has the ability to parse and format
docstrings. This requires that the docstrings conform to the ocamldoc
spec a bit more strongly. If a docstring does not parse, it is left
alone, but if it is morally ill-formed but parses by chance, it can be
reformatted incorrectly. This patch fixes the existing instances of
this problem.
Reviewed By: mbouaziz
Differential Revision: D12911937
fbshipit-source-id: 1c2eb590b
Summary: For `operator=(lhs, rhs)` we want to model it as an assignment if rhs is materialized temporary created in the constructor.
Reviewed By: jvillard
Differential Revision: D10462510
fbshipit-source-id: 998341e69
Summary: Do not create a new location for placement new argument if it already exists.
Reviewed By: jvillard
Differential Revision: D12839942
fbshipit-source-id: 758b67a82
Summary:
Get rid of `USE_AFTER_LIFETIME`. This could be useful to deploy pulse
alongside the ownership checker too.
Reviewed By: da319
Differential Revision: D12857477
fbshipit-source-id: 8e2a2a37c
Summary: Make the whole type private, introduce constructors for each variant, and deal with the consequences.
Reviewed By: da319
Differential Revision: D12825810
fbshipit-source-id: a01922812
Summary:
Keep `USE_AFTER_LIFETIME` for unclassified errors (for now it contains
vector invalidation too because I can't think of a good name for
them, and maybe it makes sense to wait until we have more types of them
to decide on a name).
Reviewed By: da319
Differential Revision: D12825060
fbshipit-source-id: bd75ef698
Summary:
Getting this right will be long and complex so for now the easiest is to
underreport and only consider as invalid the addresses we know to be invalid on
both sides of a join. In fact the condition for an address to be invalid after
a join is more complex than this: it is invalid only if *all* the addresses in
its equivalence class as discovered by the join are invalid.
Reviewed By: skcho
Differential Revision: D12823925
fbshipit-source-id: 2ca109356
Summary: Similarly as for destructors, we provide an address of an object as a first parameter to constructors. When constructor is called we want to create a fresh location for a new object.
Reviewed By: jvillard
Differential Revision: D10868433
fbshipit-source-id: b60f32953
Summary: We provide an address of an object as a parameter to destructor. When destructor is called the object itself is invalidated, but not the address.
Reviewed By: jvillard
Differential Revision: D12824032
fbshipit-source-id: 516eebcf8
Summary:
Seems useful to know when we're printing one instruction only, but not when we
print lots of them for readability.
Reviewed By: mbouaziz
Differential Revision: D12823481
fbshipit-source-id: 2beb339f2
Summary:
Turns out once a vector array became invalid it stayed that way, instead
of the vector getting a new valid internal array.
Reviewed By: skcho
Differential Revision: D10853532
fbshipit-source-id: f6f22407f
Summary:
Now the domain can reason about `&` and `*` too. When recording `&`
between two locations also record a back-edge `*`, and vice-versa.
Reviewed By: mbouaziz
Differential Revision: D10509335
fbshipit-source-id: 8091b6ec0
Summary: This is more flexible and allows us to give more details when reporting.
Reviewed By: mbouaziz
Differential Revision: D10509336
fbshipit-source-id: 79c3ac1c8
Summary: Just to organise PulseDomain a bit more since it's quite big.
Reviewed By: mbouaziz
Differential Revision: D10509334
fbshipit-source-id: a81b36aa6
Summary:
Invalidating addresses for destructors to catch use after destructor errors.
To pass ownership tests for use after destructor errors, we still need to:
(1) fix pointer arithmetic false positives
(2) add model for placement new to fix false positives
(3) add model for operator= to fix false positives
(4) support inter-procedural analysis for destructor_order_bad test
Reviewed By: jvillard
Differential Revision: D10450912
fbshipit-source-id: 2d9b1ee68
Summary:
Instead of the non-sensical piecewise join we had until now write
a proper one. Hopefully the comments explain what it does. Main one:
```
(* high-level idea: maintain some union-find data structure to identify locations in one heap
with locations in the other heap. Build the initial join state as follows:
- equate all locations that correspond to identical variables in both stacks, eg joining
stacks {x=1} and {x=2} adds "1=2" to the unification.
- add all addresses reachable from stack variables to the join state heap
This gives us an abstract state that is the union of both abstract states, but more states
can still be made equal. For instance, if 1 points to 3 in the first heap and 2 points to 4
in the second heap and we deduced "1 = 2" from the stacks already (as in the example just
above) then we can deduce "3 = 4". Proceed in this fashion until no more equalities are
discovered, and return the abstract state where a canonical representative has been chosen
consistently for each equivalence class (this is what the union-find data structure gives
us). *)
```
Reviewed By: mbouaziz
Differential Revision: D10483978
fbshipit-source-id: f6ffd7528
Summary:
Instead of propagating a partial state give up the analysis of the
function entirely on error. The state after an error is mostly
non-sensical so until we know better just giving up makes sure the
analysis remains sensible and produce fewer spurious warnings.
Reviewed By: mbouaziz
Differential Revision: D10483979
fbshipit-source-id: 171ec8469
Summary: First version of an analyzer collecting classes transitively touched.
Reviewed By: mbouaziz
Differential Revision: D10448025
fbshipit-source-id: 0ddfefd46
Summary:
`Location` was clashing with the `Location` module, so use `Address`
instead.
When invalidating an address, remember the "actor" of its invalidation,
i.e. the access expression leading to the address and the source
location of the corresponding instruction.
When checking accesses, also pass the actor responsible for the access,
so that when we raise an error we know:
1. when and why a location was invalidated
2. when and why we tried to read it after that
Reviewed By: mbouaziz
Differential Revision: D10446282
fbshipit-source-id: 3ca4fb3d4
Summary:
Model `x[y]` and `x.push_back(i)` to catch the classic bug of "take
reference inside vector, invalidate, then use again".
Reviewed By: da319
Differential Revision: D10445824
fbshipit-source-id: 21ffd9677
Summary:
Do the intersection of the heap and stack domains, and the union of the
invalid location sets. This forgets invalid locations that appear only
in one heap, unfortunately. We can start with this and improve later.
Reviewed By: mbouaziz
Differential Revision: D10445825
fbshipit-source-id: cc24460af
Summary:
New analysis in foetal form to detect invalid use of C++ objects after their
lifetime has ended. For now it has:
- A domain consisting of a graph of abstract locations representing the heap, a map from program variables to abstract locations representing the stack, and a set of locations known to be invalid (their lifetime has ended)
- The heap graph is unfolded lazily when we resolve accesses to the heap down to an abstract location. When we traverse a memory location we check that it's not known to be invalid.
- A simple transfer function reads and updates the stack and heap in a rudimentary way for now
- C++ `delete` is modeled as adding the location that its argument resolves to to the set of invalid locations
- Also, the domain has a really crappy join and widening for now (see comments in the code)
With this we already pass most of the "use after delete" tests from the
Ownership checker. The ones we don't pass are only because we are missing
models.
Reviewed By: mbouaziz
Differential Revision: D10383249
fbshipit-source-id: f414664cb
Summary:
Using debugging on uninit raised an exception. A file was opened twice and closed twice.
This happened because the two abstract interpreters (SIL, LowerHIL) conflicted.
Let's use the LowerHIL-AI directly
Reviewed By: jvillard
Differential Revision: D10126442
fbshipit-source-id: 113c9e131
Summary: Use `PerfEvent` to record the execution time of individual checkers.
Reviewed By: jeremydubreil, mbouaziz
Differential Revision: D9832102
fbshipit-source-id: 678fca155
Summary:
Callsites of `Reporting.log_error/warning` always use `Exceptions.Checkers`, let's simplify the API.
Under the hood it still creates an exception, but this can be cleaned up later.
Reviewed By: jeremydubreil
Differential Revision: D9799860
fbshipit-source-id: 6492a60b4
Summary: We had a special case for fixing false positives on constexpr implicitly captured by lambdas. However, we do not report dead stores on constexpr anymore, hence, do not need the special case anymore. Moreover, the special case was not only capturing constexpr in lambdas, but also any variables which type had `const` (see new test `capture_const_bad` which was not being reported before this diff)
Reviewed By: mbouaziz
Differential Revision: D9654848
fbshipit-source-id: 882fd2804
Summary:
It simplifies abstract memory instantiations of function calls. Now it instantiates callee memories by directly evaluating symbol paths, rather than constructing `subst_map`.
main changes are:
- no construction of `subst_map` and `trace_map`
- no symbol table in Inferbo's summary
- no `Symbol_not_found` exception (for when a required symbol was unavailable in `subst_map`)
Reviewed By: mbouaziz
Differential Revision: D9495597
fbshipit-source-id: 18cdcd6f7
Summary: We report dead store false positives in template arguments when constexpr is used. To remove the false positives, with the expense of some false negatives, we do not report dead stores on constexpr anymore.
Reviewed By: mbouaziz
Differential Revision: D9608095
fbshipit-source-id: 91b0c71c4
Summary:
Lambdas can capture references to locals of the enclosing method as long as
they are not propagated outside the method. However to keep things simple
always allow them to capture locals of the enclosing method at the price of
some false negatives.
Reviewed By: da319
Differential Revision: D8974434
fbshipit-source-id: 957ae44bd