Summary:
Extend the encoding using `id` from 0 indicating a program variable to
also -1 indicating a global program variable.
Reviewed By: bennostein
Differential Revision: D17665229
fbshipit-source-id: 848b8a31e
Summary:
Z.numbits ignores the sign, which allows 2^(N - 1) as representable
within N bits, while it is not. So check explicitly.
Reviewed By: bennostein
Differential Revision: D17665231
fbshipit-source-id: 0d3940517
Summary:
Be more explicit about semantics of unsigned vs. signed conversions,
and fix a few related corner cases.
Reviewed By: bennostein
Differential Revision: D17665268
fbshipit-source-id: 67fecdf34
Summary:
Revise program expressions based on the changed constraints now that
Term is separate from Exp. In particular:
- Add types to all application, indicating how the operation
interprets its arguments
- Change to a simpler uncurried form
- Remove now-unneeded normalizations
Reviewed By: bennostein
Differential Revision: D17665236
fbshipit-source-id: 1bcf2efd6
Summary:
Boolean and bitwise negation of `e` is represented using `-1 xor
e`. Since Equality can only maintain and propagate equality
constraints, Boolean negation `-1 xor b` is normalized to `b =
false`. This diff delays this normalization from being part of
expression construction to part of symbolic heap formula
construction. This makes the normalization done as part of expression
construction independent of the distinction between bitwise and
boolean operations.
Reviewed By: bennostein
Differential Revision: D17665254
fbshipit-source-id: 0a0722865
Summary:
Splat, Memory, and Concat expressions are never used. Only the term
forms are needed.
Reviewed By: bennostein
Differential Revision: D17665259
fbshipit-source-id: cbfd7650d
Summary:
There are a number if issues with using the same type for expressions
in code and in formulas. One is that the type systems of the two
should be different. Another is that conflating the two compromises
the ability of Llair to correctly express aspects such as integer
overflow, floating point rounding, etc. Also, it could be beneficial
to have more source locations for program expressions than makes sense
for terms.
This diff simply unshares Exp, leading to a copy named Term. Likewise,
Reg is now a copy of Var. Simplifications to come.
Reviewed By: bennostein
Differential Revision: D17665250
fbshipit-source-id: 4359a80d5
Summary:
The generation of names for the function formal return and throw
parameters is not central to LLAIR, but a detail of the frontend,
since they are generated only because LLVM does not already have such
names.
Reviewed By: ngorogiannis
Differential Revision: D17665240
fbshipit-source-id: 684cbae92
Summary:
Using a type of keys richer than strings, which are the unique symbol
names at the C/LLVM level, is unnecessary.
Reviewed By: ngorogiannis
Differential Revision: D17665262
fbshipit-source-id: 6b8c31146
Summary:
The convenience wrappers for operations on signed 1-bit integers
represented by Z.t are not specific to Exp.
Reviewed By: ngorogiannis
Differential Revision: D17665252
fbshipit-source-id: d4b58e2a6
Summary:
This diff adds a "-prenalyze-globals" flag to all analyze targets
which, when set, computes used-globals sets for all reachable
functions and then uses that information to track only relevant
global variables at calls in the main analysis.
Reviewed By: jberdine, jvillard
Differential Revision: D17526746
fbshipit-source-id: 1a114285c
Summary:
Fixes a bug in Llair.Frontend.xlate_value where the l-val register
of LLVM instruction calls was being marked as global.
Reviewed By: jberdine
Differential Revision: D17570458
fbshipit-source-id: e1b5924e2
Summary:
Adds an abstract domain to track global variable usages, as well as supporting
changes to the frontend, IR and CLI. This analysis will support optimizations
to the main symbolic-heap analysis, but for now can be invoked independently
through the `-domain` flag on `analyze` targets of the Sledge executable.
Reviewed By: jberdine
Differential Revision: D17422212
fbshipit-source-id: 74bed0a76
Summary:
In some cases inlining pure expressions into their use sites causes
code blowup. This diff changes the frontend to inline expressions only
if there is a single use, and otherwise adds a move instruction.
Reviewed By: ngorogiannis
Differential Revision: D17071770
fbshipit-source-id: d866a0622
Summary:
This has been out of date since arithmetic was changed from a purely
uninterpreted treatment to having a solver.
Reviewed By: jvillard
Differential Revision: D16985159
fbshipit-source-id: 39e42069c
Summary:
While SSA can be useful for code transformation purposes, it offers
little for semantic static analyses. Essentially, such analyses
explore the dynamic semantics of code, and the *static* single
assignment property does not buy much. For example, once an execution
visits a loop body that assigns a variable, there are multiple
assignments that the analysis must deal with. This leads to the need
to treat blocks as if they assign all their local variables, renaming
to avoid name clashes a la Floyd's assignment axiom. That is fine, but
it makes it much more involved to implement a version that is
economical with respect to renaming only when necessary. Additionally
the scoping constraints of SSA are cumbersome and significantly
complicate interprocedural analysis (where there is a long history of
incorrect proof rules for procedures, and SSA pushes the
interprocedural analysis away from being able to use known-good
ones). So this diff changes Llair from a functional SSA form to a
traditional imperative language.
Reviewed By: jvillard
Differential Revision: D16905898
fbshipit-source-id: 0fd835220
Summary:
`__llair_alloc` is meant to be a drop-in non-failing replacement for
`mallco`. Currently `__llair_alloc(1)` allocates 8 bytes instead of 1 as
`malloc(1)` would. This is because handling of `__llair_alloc` was
merged with handling of `new`. This patch reverts changes to handling of
`new` in D15778817 and adds a new case for `__llair_alloc`.
Reviewed By: jvillard
Differential Revision: D16356865
fbshipit-source-id: 3878d87c3
Summary:
Add a global merge pass that merges globals into a single big global. It
replaces the uses of globals merged, with offsets into the big global.
Function summarisationis a big benefactor of this as it greatly reduces
the number of implicit formals (ie. globals).
Reviewed By: jvillard
Differential Revision: D16260098
fbshipit-source-id: 1b936f02f
Summary:
Add a `-color` option to sledge, that prints variable that are
existentially bound as bold.
Reviewed By: ngorogiannis
Differential Revision: D16088750
fbshipit-source-id: bd21cb8a0
Summary:
Trivial renamings to use the standard "libFuzzer" name instead of "lib
fuzzer".
Reviewed By: kren1
Differential Revision: D16067881
fbshipit-source-id: 3ff2a8f86
Summary: For buck targets that contain at least one of the substrings in `buck-target-pattern` option in config, change the buck target to add `_sledge` suffix.
Reviewed By: jberdine
Differential Revision: D15920018
fbshipit-source-id: 44c242e99
Summary:
Simplify all conversions between castable types to the identity. The
backend treats castable types as equal, so distinguishing conversions
between them is incomplete.
Reviewed By: kren1
Differential Revision: D15972427
fbshipit-source-id: fa09859ac
Summary:
The entry block contains all locals of the entire function, as
required by the backend. This makes the manipulation of the locals of
each block redundant.
This diff moves the locals from the entry block to the function
itself, removes the Locals frames of the Control.Stack, and adds a
locals field to Return frames.
This is part cleanup and part preparation for removing the
Control.Stack.
Reviewed By: ngorogiannis
Differential Revision: D15963503
fbshipit-source-id: 523ebc260
Summary:
Adds `-mergefunc` and `-dce` passes to `Frontend.translate` to match
the `buck link` flow with `opt`
Reviewed By: ngorogiannis
Differential Revision: D15938641
fbshipit-source-id: 128cb89cd
Summary:
The current handling of the formal return variable scope is not
correct. Since it is passed as an actual argument to the return
continuation, it is manipulated as if it was a local variable of the
caller. However, its scope is not ended with the caller's locals,
leading to clashes.
This diff reworks the passing of return values to avoid this problem,
mainly by introducing a notion of temporary variables during parameter
passing. This essentially has the effect of taking a function spec
{ P } f(x) { λv. Q }
and generating a "temporary" variable v, applying the post λv. Q to it
to obtain the pre-state for the call to the return continuation
k(v). Being a temporary variable just means that it goes out of scope
just after parameter passing. This amounts to a long-winded way of
applying the post-state to the formal parameter of the return
continuation without violating scopes or SSA.
This diff also separates the manipulation of the symbolic states as they
proceed from:
1. the pre-state before the return instruction;
2. the exit-state after the return instruction (including the binding
of the returned value to the return formal variable);
3. the post-state, where the locals are existentially quantified; and
4. the return-state, which is expressed in terms of actual args
instead of formal parameters.
Also in support of summarization, formal return and throw parameters
are no longer tracked on the analyzer's stack.
Note that these changes involve changing the locals of blocks and
functions to no longer include the formal parameters.
Reviewed By: kren1
Differential Revision: D15912148
fbshipit-source-id: e41dd6e42
Summary:
:
This patch adds several passes that reduce the amount of bitcode
making sledge's job easier, more info:
https://llvm.org/docs/Passes.html
`-mergefunc`
This pass merges functions that do the same thing, this can be because of
templating or casts (ie. same functionality but on 32bit and 64bit ints,
which is the same in machine code). More details at
http://llvm.org/docs/MergeFunctions.html
Note that this pass is currently not available through C/OCaml API.
`-constmerge`
This merges constants that have the same value, this is possible to do
when the constants are internalized.
`-argpromotion`
```
This pass promotes “by reference” arguments to be “by value” arguments.
In practice, this means looking for internal functions that have pointer
arguments. If it can prove, through the use of alias analysis, that an
argument is only loaded, then it can pass the value into the function
instead of the address of the value. This can cause recursive
simplification of code and lead to the elimination of allocas
(especially in C++ template code like the STL).
```
`-ipsccp`
```
Sparse conditional constant propagation and merging, which can be
summarized as:
Assumes values are constant unless proven otherwise
Assumes BasicBlocks are dead unless proven otherwise
Proves values to be constant, and replaces them with constants
Proves conditional branches to be unconditional
```
`-deadargelim`
Removes dead arguments of internal functions, good to run after other inter-procedural
passes. Seems to crash llvm if run directly after `ipsccp`.
Note that while this might look like doing full link-time optimisation,
we are actually picking relatively cheap optimisations that mostly look
at globals and walk their use chains. The main reason link-time
optimisations are expensive is due to inlining and then running the full
optimisation again from there.
Reviewed By: jberdine
Differential Revision: D15851408
fbshipit-source-id: be7191683
Summary:
Previous change to allow bitcasts in call instructions was too strict
and did not allow for indirect calls.
Reviewed By: jberdine
Differential Revision: D15803262
fbshipit-source-id: 40d828b59
Summary:
This diff adds a `__llair_alloc` intrinsic which is modeled
as a non-failing malloc. Using it instead of `malloc` increases
the readbility of symbolic heaps, because it removes all the cases
where malloc failed.
Note that `assert(malloc())` does not have the desired effect.
Reviewed By: ngorogiannis
Differential Revision: D15778817
fbshipit-source-id: d02784077
Summary:
Some call instructions in LLVM bitcast the function,
for example
`%call = call i32 (i64, ...) bitcast (i32 (...)* @__llair_alloc to i32 (i64, ...)*)(i64 %conv)`
This would cause sledge to crash in LLVM when build with assertions.
Reviewed By: jberdine
Differential Revision: D15779003
fbshipit-source-id: c273f92db
Summary:
This diff adds a formal parameter to each non-void-returning function
to name the return value, and similarly a formal parameter for the
thrown exception value. These are interpreted as call-by-reference
parameters, so that they can be constrained in formulas to e.g. be
equal to the return value, and are still in scope when the function
returns, and so can be passed to the return block. Prior to
summarizing functions, this means that these formals need to be
tracked on the analyzer's control stack.
This will be needed to express function specs/summaries in terms of
formals, and fixes a bug where in some cases return values were not
tracked correctly.
Reviewed By: kren1
Differential Revision: D15738026
fbshipit-source-id: fff2d107c
Summary:
Previously the locals of a function were computed after backpatching
the blocks in its cfg. This resulted in loss of sharing, and incorrect
locals if queried through the parent of a block.
Reviewed By: kren1
Differential Revision: D15738027
fbshipit-source-id: d7e70530a
Summary:
Sometimes calls to the `abort` C stdlib function appear as `invoke`
instructions in LLVM. They should be translated to the LLAIR abort
instruction just like the non-raising `call abort` case.
Reviewed By: kren1
Differential Revision: D15706574
fbshipit-source-id: 1509ed0e3
Summary:
Most binary and ternary operations have the same type as their
arguments, so try to compute the type of arguments in these cases.
Reviewed By: kren1
Differential Revision: D15706576
fbshipit-source-id: 4749d6e32
Summary:
When LLVM is built with assertions, it crash
`add_sym` if you try to get the global scope of a non global value.
This patch special cases add_sym, to just do nothing when `llv` is
an `UndefValue`.
Also enhances debuging printout of transalte to include the number of
functions and globals.
Reviewed By: jvillard
Differential Revision: D15669447
fbshipit-source-id: 4b5483810
Summary:
The entry point functions are used in a couple of places, this
puts them in a single source of truth in the config file.
Reviewed By: jvillard
Differential Revision: D15651976
fbshipit-source-id: a572e8d4d
Summary:
This adds a globalopt optimization pass to sledge.
Consider code like:
```
const char *a_string = "I'm a string";
int an_int = 0;
int c() {
return an_int;
}
int main() {
char *c1 = a_string;
return c();
}
```
When compiled there are 2 levels of indirection. For example
`return an_int` Get's compiled as
```
%0 = load i32, i32* an_int1
ret i32 %0
```
Global opt reduces this (if `an_int` is internal) to just
` ret i32 0`.
Similarly and more importantly
`c1 = a_string;` get's compiled into
```
@.str = private unnamed_addr constant [13 x i8] c"I'm a string\00"
a_string = dso_local global i8* getelementptr inbounds ([13 x i8], [13 x i8]* @.str, i32 0, i32 0)
%c1 = alloca i8*, align 8
%0 = load i8*, i8** a_string, align 8, !dbg !25
store i8* %0, i8** %c1, align 8, !dbg !24
```
So there is a level of indirection between `c1` and `.str` where the string is stored.
With global opt, this gets reduced to:
```
@.str = private unnamed_addr constant [13 x i8] c"I'm a string\00"
%c1 = alloca i8*, align 8
store i8* getelementptr inbounds ([13 x i8], [13 x i8]* @.str, i64 0, i64 0), i8** %c1, align 8, !dbg !23
```
and `a_string` variable gets deleted.
On sledge this has the effect of reducing the complexity of the symbolic heap significantly.
Without this optimisation, running
`sledge.dbg llvm analyze -trace Domain.call global_vars.bc`
Gives prints the following segments:
```
∧ %.str -[)-> ⟨13,{}⟩
* %a_string -[)-> ⟨8,%.str⟩
* %an_int -[)-> ⟨4,0⟩
* %c1 -[)-> ⟨8,%.str⟩
* %retval -[)-> ⟨4,0⟩
```
So there are `an_int` and `a_string` segments, which are redundant.
with the optimisation, the heap looks like:
`∧ %.str -[)-> ⟨13,{}⟩ * %c1 -[)-> ⟨8,%.str⟩ * %retval -[)-> ⟨4,0⟩`,
Where we only have the `.str` segment and the `c1` segment, which are the two we need.
Reviewed By: ngorogiannis
Differential Revision: D15649195
fbshipit-source-id: 5f71e56e8
Summary:
Change command line interface to include buck and llvm integration as
separate subcommands.
Reviewed By: kren1
Differential Revision: D15614567
fbshipit-source-id: b7618571b
Summary:
Use the new LLVM bindings to handle internalization.
We would like to use global dead code elimination (gdce) to remove all the code not reachable from an entry point. However in normal compilation most functions aren't globally dead (they can be linked to). At the point of running sledge we won't be linking anymore, therefore we can internalize (make invisible outside of the compilation unit) all the symbols. In that case the whole program is dead with respect to gdce, therefore we need to preserve the entry point as external.
Previously we could only preserve `main` as the entry point (through a boolean flag). This patch uses a newer API that lets us preserve functions that satisfy a given predicate function. This enables us to have arbitrary entry points (not just main). Currently only the 3 entry points from `src/control.ml` are used, but this patch makes it easy to change.
Reviewed By: ngorogiannis
Differential Revision: D15561461
fbshipit-source-id: 88e054411
Summary:
LLVM.global_initializer casues a cast assertion failure if the value
passed to it is not a GlobalVariable. So we first check if it is a
GlobalVariable and only then ask for an initiliazer.
This is hidden if LLVM is built without assertions.
Reviewed By: jberdine
Differential Revision: D15601632
fbshipit-source-id: e9db23a12
Summary:
This diff changes the translation of global variables to translate the
initializer whenever it exists in LLVM, rather than relying on
linkage. Previously code such as
```
char *mutable_string = "hahaha";
```
would lead to LLVM code
```
nutritious_string = global i8* getelementptr inbounds ([7 x i8], [7 x i8]* @.str, i32 0, i32 0), align 8, !dbg !0 ; [#uses=2 type=i8**]
```
in which `mutable_string` had `External` linkage according to
`Llvm.linkage` even though it has an initializer. This could cause
sledge to drop the initializer.
Reviewed By: kren1
Differential Revision: D15577755
fbshipit-source-id: 50aa06c5e
Summary:
Global variables have pointer type. The size needed by the backend is
of the element type, not of the pointer itself. This diff corrects
this.
Reviewed By: kren1
Differential Revision: D15577756
fbshipit-source-id: 948ecf3cd
Summary:
The root cause is not clear, but it seems that not calling
Llvm.dispose_context avoids segfaults in the GC.
Reviewed By: kren1
Differential Revision: D15535434
fbshipit-source-id: 280e44d0b
Summary:
The name and loc tables are added-to almost exactly in sync, so
combine them to amortize the overhead.
Reviewed By: kren1
Differential Revision: D15535435
fbshipit-source-id: 801da75bb
Summary:
Format is slow. Especially Format.sprintf, which has to allocate and
initialize a buffer every time.
Reviewed By: kren1
Differential Revision: D15535437
fbshipit-source-id: ea43f44e1
Summary:
This isn't free and is expected to hold of bitcode produced by
clang/llvm. There are tests that fail verification, so keep it in
debug mode.
Reviewed By: kren1
Differential Revision: D15535438
fbshipit-source-id: 9390a8363
Summary:
If the input file has a .bc or .ll suffix, treat it as a pre-linked
bitcode file. Otherwise, treat it as before, as a file containing a
list of bitcode files to be linked. Also, perform global dead-code
elimination only when linking multiple files.
Reviewed By: kren1
Differential Revision: D15513345
fbshipit-source-id: 4c80ff9c3
Summary:
Change the sledge input format from a bitcode file to a newline
separated list of paths to LLVM bitcode files.
Reviewed By: jberdine
Differential Revision: D15470082
fbshipit-source-id: 8860f947c
Summary:
Llvm.string_of_llvalue, which just calls llvm::Value::print, is
extremely slow when called on instructions or functions. In these
cases, it initializes metadata slots for everything in the *parent
module* of the instruction or function being printed, on every
call. This is ridiculously slow, don't do it.
Reviewed By: kren1
Differential Revision: D15511376
fbshipit-source-id: 658eeccab
Summary:
Add shortcut code paths to return early in some cases guaranteed to be
the identity function.
Reviewed By: ngorogiannis
Differential Revision: D15468704
fbshipit-source-id: f137049c6
Summary:
For some Exp forms, Exp.solve is not complete, and this is necessary
since the result of solve is a substitution that needs to encode the
input equation as a conjunction of equations each between a variable
and an exp. This is tantamount to, stronger even than, the theory
being convex. So Exp.solve is not complete for some exps, and some of
those have constructors that perform some simplification. For example,
`(1 ≠ 0)` simplifies to `-1` (i.e. true). To enable deductions such as
`((x ≠ 0) = b) && x = 1 |- b = -1` needs the equality solver to
substitute through subexps of simplifiable exps like = and ≠, as it
does for interpreted exps like + and ×. At the same time, since
Exp.solve for non-interpreted exps cannot be complete, to enable
deductions such as `((x ≠ 0) = (y ≠ 0)) && x = 1 |- y ≠ 0` needs the
equality solver to congruence-close over subexps of simplifiable exps
such as = and ≠, as it does for uninterpreted exps.
To strengthen the equality solver in these sorts of cases, this diff
adds a new class of exps for = and ≠, and revises the equality solver
to handle them in a hybrid fashion between interpreted and
uninterpreted.
I am not currently sure whether or not this breaks the termination
proof, but I have also not managed to adapt usual divergent cases to
break this. One notable point is that simplifying = and ≠ exps always
produces genuinely simpler and smaller exps, in contrast to
e.g. polynomial simplification and gaussian elimination.
Note that the real solution to this problem is likely to be to
eliminate the i1 type in favor or a genuine boolean type, and
translate all integer operations on i1 to boolean/logical ones. Then
the disjunction implicit in e.g. equations between disequations would
appear as actual disjunction, and could be dealt with as such.
Reviewed By: jvillard
Differential Revision: D15424823
fbshipit-source-id: 67d62df1f
Summary:
* Adds compilation of cxxabi.bc
* Includes the cxxabi.bc into the sledge executable via opam-crunch
* Links cxxabi.bc in sledge frontend
Reviewed By: jberdine
Differential Revision: D15415190
fbshipit-source-id: cc42f09fb
Summary:
There are two motivations for this:
1. Distinguish between `Unreachable`, which silently terminates
execution a la `assume false`; and `Abort`, which vocally
terminates execution a la `assert false`.
2. Distinguish between undefined functions, which have `Unreachable`
bodies, and bomb functions such as:
```
define void bomb() {
tail call void llvm.trap()
unreachable
}
```
Reviewed By: ngorogiannis
Differential Revision: D15408246
fbshipit-source-id: b64354cdb
Summary:
Require a final `()` argument to explicitly indicate the end of the
arguments to the printf-like functions. For `warn` this is not
any safer because the return type is `unit` anyhow, but for `fail` the
return type is polymorphic so the final `()` prevents unintentionally
forgetting an argument.
Reviewed By: ngorogiannis
Differential Revision: D15403367
fbshipit-source-id: ce3fe4035
Summary:
llvm.trap is noreturn nounwind so calls to it are always succeeded by
Unreachable, therefore unless an alarm is desired for reaching it,
translating it as nop suffices.
Reviewed By: ngorogiannis
Differential Revision: D15328302
fbshipit-source-id: 54efe6c21
Summary:
A previous rebase fumble sometimes led to the wrong arguments being
passed to retpolines of Invoke instructions.
Reviewed By: ngorogiannis
Differential Revision: D15323950
fbshipit-source-id: f6eb6fbe2
Summary:
It is (now?) the case that `[%sexp_of: type_name]` generates just
`sexp_of_type_name`, rather than expanding `type_name` to its
definition and generating a conversion function for that. Hence, when
such cases appear within `let rec sexp_of_type_name`, they get
captured, sometimes leading to divergence.
This diff fixes this by manually expanding such types into their
definitions.
Reviewed By: ngorogiannis
Differential Revision: D15314736
fbshipit-source-id: 716fff7cc
Summary: There was a missing case for singleton monomials of degree > 1.
Reviewed By: mbouaziz
Differential Revision: D15098810
fbshipit-source-id: e6d17d899
Summary:
Boolean Xor expressions are treated directly by the solver, so the 'no
new subexps' invariant for congruence closure is not needed.
Reviewed By: mbouaziz
Differential Revision: D15098817
fbshipit-source-id: d118c5881
Summary: Shifting by too many bits is undefined, so do not normalize them.
Reviewed By: mbouaziz
Differential Revision: D15098812
fbshipit-source-id: 96f4606d7
Summary:
When constructing division expressions from rational coefficients of
polynomials, the constant numerator and denominator should be clamped
to the number of bits in the result type.
Reviewed By: mbouaziz
Differential Revision: D15098825
fbshipit-source-id: fa448c39a
Summary:
Some constants are used during Exp normalization, to encode
subtraction using addition, units of addition and multiplication,
etc. Previously these were unconditionally integers, but need to be
floats for float arithmetic.
Reviewed By: mbouaziz
Differential Revision: D15098815
fbshipit-source-id: 13d1be142
Summary:
The frontend would implicitly assume there was (at least) one argument
to calls to operator new. If code declares operator new with the wrong
type, this can lead to crashing trying to access a missing arg.
Reviewed By: mbouaziz
Differential Revision: D15098820
fbshipit-source-id: 539281a83
Summary: These relaxations are needed for some of the llvm test suite.
Reviewed By: mbouaziz
Differential Revision: D15098813
fbshipit-source-id: 702d3ffd9
Summary:
Some globals have initializers which refer to the global
itself (e.g. for program counter relative offsets). Memoizing
translation of globals gives enough machinery to detect and handle
this situation.
Reviewed By: mbouaziz
Differential Revision: D15098819
fbshipit-source-id: ecc9dce92
Summary:
In some cases there were extra metadata operands (such as alignment of
an alloc) which would cause the debug locations to not be recorded.
Reviewed By: mbouaziz
Differential Revision: D15098816
fbshipit-source-id: a7e83f590
Summary:
The backend does not generally interpret conditional expressions
specially. Therefore it is logically stronger to hoist them over other
boolean exps, for example normalizing
`e = (c ? t : f)` to `(c ? e = t : e =f)`
This enables the treatment of top-level conditional expressions in
terms of disjunction, conjunction and negation.
Reviewed By: mbouaziz
Differential Revision: D14495815
fbshipit-source-id: 4f2e8053f
Summary:
Eq and Dq expressions are interpreted by Equality and Exp, rather than
being considered uninterpreted functions. Classifying them as
interpreted results in stronger Equality normalization.
Reviewed By: mbouaziz
Differential Revision: D14495817
fbshipit-source-id: 44bb376c0
Summary:
The dnf implementation dates to before nested existentials were
added. Updating it was overlooked, and it is just wrong.
Reviewed By: ngorogiannis
Differential Revision: D14481988
fbshipit-source-id: 9bba570f0
Summary:
Also minor change to make strlen implementation syntactically closer
to spec.
Reviewed By: ngorogiannis
Differential Revision: D14403647
fbshipit-source-id: 48c771329
Summary:
Some functions are translated directly to an expression, rather than a
function call. The llvm instructions for calling functions that may
and may not raise exceptions differ (Invoke and Call, resp.). This
diff adds support for the Invoke case.
Reviewed By: jvillard
Differential Revision: D14385596
fbshipit-source-id: 24458d960
Summary:
These tell llvm that contents of memory will not change during
execution of some code, which the analyzer does not need.
Reviewed By: jvillard
Differential Revision: D14385597
fbshipit-source-id: 0ef566a6f
Summary:
The backend has an implicit assumption that the entry block's locals
are all the function locals, not just those that happen to appear in
the entry block.
An alternative would be to collect the inverse renaming substitutions
produced by symbolic execution of jumps, which rename variables to
avoid clashes with the destination block's locals. These inverse
substitutions could be applied upon function return, in inverse
order. The complication with this approach is that it would be
necessary to distinguish between a destination local that clashes
because it has the same name as a local of some function higher in the
call stack versus a clash due to being a previous incarnation of the
same local due to a control-flow cycle. Accumulating unrenamings for
the latter case is expensive and pointless, as well as incongrous with
true interprocedural extensions.
So it seems preferable to exploit the asymmetry between the entry
block and others a bit more.
Reviewed By: jvillard
Differential Revision: D14354530
fbshipit-source-id: 815cdb224
Summary: An initial set of basic sanity checks for frame inference.
Reviewed By: mbouaziz
Differential Revision: D14323549
fbshipit-source-id: d7cd4235f
Summary:
- Change representation of Concat expressions from curried binary
operator to an nary one. This enables normalizing Concat expressions
with respect to associativity.
- Generalize Exp.solve to return a map rather than a pair of exps, to
enable expressing cases where solving an equation yields multiple
equations.
- Strengthen solver with implied equalities between sums of sizes of
concatenations of byte arrays.
Reviewed By: ngorogiannis
Differential Revision: D14297865
fbshipit-source-id: b40871559
Summary:
This patch adds an embarrassingly inefficient implementation of a
decision procedure for equality in the theories of uninterpreted
functions and linear arithmetic. A Shostak-style approach, where a
single congruence closure structure is shared by all theories, is
used. This is mostly based on the corrected variant of Shostak's
algorithm from:
Harald Rueβ and Natarajan Shankar. 2001. Deconstructing Shostak. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science (LICS '01).
Reviewed By: jvillard
Differential Revision: D14251655
fbshipit-source-id: 8a080145f
Summary:
Now with rational coefficients, dividing a polynomial by an integer
can be simplified.
Reviewed By: jvillard
Differential Revision: D14251656
fbshipit-source-id: 01094bc61
Summary:
Exp simplification must not generate fresh subexpressions in its
output that do not appear in its input, lest congruence closure gets
confused. Previously this check only considered immediate
subexpressions, which is overly restrictive.
Reviewed By: ngorogiannis
Differential Revision: D14251653
fbshipit-source-id: f8d5d9756
Summary:
Trace.report is essentially redundant with Trace.fail, and does not
behave as well wrt flushing when raising exceptions.
Reviewed By: ngorogiannis
Differential Revision: D14251657
fbshipit-source-id: 69a61c915
Summary:
Represent Add and Mul directly as associative and commutative nary
operations, rather than have Add and Mul operators and a separate AppN
nary application.
Reviewed By: ngorogiannis
Differential Revision: D14231544
fbshipit-source-id: 4fb7a06cf
Summary:
- Add nary expressions implemented using a form of multisets which
support any integer multiplicity
- Reimplement polynomials using new nary expressions
- Move the decomposition of exps into "base plus offset" form into
Exp, to enforce simplification invariants
- Revise expression simplification to cooperate with congruence
closure (mainly: simplification should not invent new
subexpressions)
- Reimplement congruence closure plus integer offsets to
+ cope with new representation of polynomials using nary expression forms
+ be diligent about maintaining which expressions are in the relation
+ add lots of invariant checking for the correlations between the
componnents of the congruence closure data structures
Reviewed By: jvillard
Differential Revision: D14075512
fbshipit-source-id: 2dbaf3d11
Summary:
This is significant for operations involving the NULL pointer, which
is an integer of pointer type.
Reviewed By: mbouaziz
Differential Revision: D14075516
fbshipit-source-id: b727cb4c8
Summary:
Comparison operations always return Typ.bool, and Add/Mul/Integer exps
are typed. Use these types to check that arguments are type correct up
to Typ.castable.
Reviewed By: mbouaziz
Differential Revision: D12854504
fbshipit-source-id: fff1426d5
Summary:
Require Exp clients to provide the type of the result of arithmetic
operations.
Reviewed By: mbouaziz
Differential Revision: D12854511
fbshipit-source-id: cc91a39ca
Summary:
Previously only the arguments of binary operations on integers were
clamped to the given bitwidth, but the results could overflow. This
was incorrect.
Also, use a clamped version of equality to simplify equality
expressions. This was previously overlooked.
Reviewed By: mbouaziz
Differential Revision: D12854502
fbshipit-source-id: 8786b4217
Summary:
Types of integer constants, in particular their bit-width, are
necessary for:
- correctly interpreting bitwise operations (e.g. `-1 xor 1` at type
`i1` is `0` while without the type the result is `-2`), and;
- distinguishing between integers and booleans, which are one-bit
integers, since booleans admit stronger algebraic simplification.
Note that code does genuinely treat 1-bit integers interchangeably as
booleans and integers, e.g. with expressions such as `e + (b != 42)`.
Therefore a lighter-weight early syntactic distinction between boolean
and bitwise operations is nontrivial/impossible to make robust.
This patch:
- adds the type to the representation of Exp.Integer;
- adds checks that Integer values fit within their specified bit-width
- factors out code handling 1-bit integers as booleans into `Z`, as it
is easy to make mistakes when forgetting that `-1`, not `1`, is the
representation of `true`;
- corrects the treatment of Exp.Convert in some cases involving
treating negative integers as unsigned;
- corrects and strengthens Exp simplification based on the bit-width
information;
- removes the `e - e ==> 0` simplification, due to not having the type
for `0`.
Reviewed By: mbouaziz
Differential Revision: D10488407
fbshipit-source-id: ff4320a29
Summary:
The main motivation is to factor out the code that determines the test
condition, e.g. to uniformly test `!= 0` vs `= 1`.
Also a convenience, and there are enough uses to make it worthwhile
and a readability improvement.
Reviewed By: mbouaziz
Differential Revision: D10488408
fbshipit-source-id: 520e843f3
Summary:
Just a convenience, but there are enough uses to make it worthwhile,
and a readability improvement.
Reviewed By: mbouaziz
Differential Revision: D10488404
fbshipit-source-id: 30cca06d5